
Prejaas Tewarie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3981268/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The OSCAR-IB Consensus Criteria for Retinal OCT Quality Assessment. PLoS ONE, 2012, 7, e34823.	2.5	423
2	Direction of information flow in large-scale resting-state networks is frequency-dependent. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3867-3872.	7.1	312
3	Dynamics of large-scale electrophysiological networks: A technical review. NeuroImage, 2018, 180, 559-576.	4.2	174
4	A Mapping Between Structural and Functional Brain Networks. Brain Connectivity, 2016, 6, 298-311.	1.7	127
5	Timing of retinal neuronal and axonal loss in MS: a longitudinal OCT study. Journal of Neurology, 2016, 263, 1323-1331.	3.6	112
6	Integrating cross-frequency and within band functional networks in resting-state MEC: A multi-layer network approach. Neurolmage, 2016, 142, 324-336.	4.2	104
7	Functional brain networks: Linking thalamic atrophy to clinical disability in multiple sclerosis, a multimodal fMRI and MEG Study. Human Brain Mapping, 2015, 36, 603-618.	3.6	96
8	Relationships Between Neuronal Oscillatory Amplitude and Dynamic Functional Connectivity. Cerebral Cortex, 2019, 29, 2668-2681.	2.9	85
9	Tracking dynamic brain networks using high temporal resolution MEG measures of functional connectivity. Neurolmage, 2019, 200, 38-50.	4.2	83
10	How do spatially distinct frequency specific MEG networks emerge from one underlying structural connectome? The role of the structural eigenmodes. NeuroImage, 2019, 186, 211-220.	4.2	81
11	Disruption of structural and functional networks in long-standing multiple sclerosis. Human Brain Mapping, 2014, 35, 5946-5961.	3.6	79
12	Cognitive and Clinical Dysfunction, Altered MEG Resting-State Networks and Thalamic Atrophy in Multiple Sclerosis. PLoS ONE, 2013, 8, e69318.	2.5	68
13	Predicting haemodynamic networks using electrophysiology: The role of non-linear and cross-frequency interactions. NeuroImage, 2016, 130, 273-292.	4.2	64
14	Consistency of magnetoencephalographic functional connectivity and network reconstruction using a template versus native M <scp>RI</scp> for coâ€registration. Human Brain Mapping, 2018, 39, 104-119.	3.6	58
15	Minimum spanning tree analysis of the human connectome. Human Brain Mapping, 2018, 39, 2455-2471.	3.6	55
16	Hierarchical clustering in minimum spanning trees. Chaos, 2015, 25, 023107.	2.5	47
17	Comparing multilayer brain networks between groups: Introducing graph metrics and recommendations. NeuroImage, 2018, 166, 371-384.	4.2	44
18	Explaining the heterogeneity of functional connectivity findings in multiple sclerosis: An empirically informed modeling study. Human Brain Mapping, 2018, 39, 2541-2548.	3.6	40

Prejaas Tewarie

#	Article	IF	CITATIONS
19	Mapping functional brain networks from the structural connectome: Relating the series expansion and eigenmode approaches. NeuroImage, 2020, 216, 116805.	4.2	40
20	Dynamic hub load predicts cognitive decline after resective neurosurgery. Scientific Reports, 2017, 7, 42117.	3.3	39
21	The road ahead in clinical network neuroscience. Network Neuroscience, 2019, 3, 969-993.	2.6	37
22	The Union of Shortest Path Trees of Functional Brain Networks. Brain Connectivity, 2015, 5, 575-581.	1.7	24
23	The epidemic spreading model and the direction of information flow in brain networks. NeuroImage, 2017, 152, 639-646.	4.2	24
24	How Sensitive Are Conventional MEG Functional Connectivity Metrics With Sliding Windows to Detect Genuine Fluctuations in Dynamic Functional Connectivity?. Frontiers in Neuroscience, 2019, 13, 797.	2.8	24
25	Resting-state MEG measurement of functional activation as a biomarker for cognitive decline in MS. Multiple Sclerosis Journal, 2019, 25, 1896-1906.	3.0	19
26	Abnormal meta-state activation of dynamic brain networks across the Alzheimer spectrum. NeuroImage, 2021, 232, 117898.	4.2	19
27	Neural Network Modeling of EEG Patterns in Encephalopathy. Journal of Clinical Neurophysiology, 2013, 30, 545-552.	1.7	18
28	Brain network clustering with information flow motifs. Applied Network Science, 2017, 2, 25.	1.5	18
29	Predicting timeâ€resolved electrophysiological brain networks from structural eigenmodes. Human Brain Mapping, 2022, 43, 4475-4491.	3.6	17
30	Minimum spanning tree analysis of brain networks: A systematic review of network size effects, sensitivity for neuropsychiatric pathology, and disorder specificity. Network Neuroscience, 2022, 6, 301-319.	2.6	13
31	Functional brain network organization measured with magnetoencephalography predicts cognitive decline in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 1727-1737.	3.0	12
32	On the Validity of Neural Mass Models. Frontiers in Computational Neuroscience, 2020, 14, 581040.	2.1	11
33	Interlayer connectivity reconstruction for multilayer brain networks using phase oscillator models. New Journal of Physics, 2021, 23, 063065.	2.9	9
34	Structure-function coupling as a correlate and potential biomarker of cognitive impairment in multiple sclerosis. Network Neuroscience, 2022, 6, 339-356.	2.6	9
35	Structureâ€function relationships in the visual system in multiple sclerosis: an <scp>MEG</scp> and <scp>OCT</scp> study. Annals of Clinical and Translational Neurology, 2017, 4, 614-621.	3.7	7
36	Video-Based Pairwise Comparison: Enabling the Development of Automated Rating of Motor Dysfunction in Multiple Sclerosis. Archives of Physical Medicine and Rehabilitation, 2020, 101, 234-241.	0.9	7

#	Article	IF	CITATIONS
37	Longitudinal consistency of source-space spectral power and functional connectivity using different magnetoencephalography recording systems. Scientific Reports, 2021, 11, 16336.	3.3	5
38	Schizophrenia induces abnormal frequency-dependent patterns of dynamic brain network reconfiguration during an auditory oddball task. Journal of Neural Engineering, 2022, 19, 016033.	3.5	3