
Minghua Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3981057/publications.pdf Version: 2024-02-01

Мілісний 7ноц

#	Article	IF	CITATIONS
1	Recent advances in H2O2-based advanced oxidation processes for removal of antibiotics from wastewater. Chinese Chemical Letters, 2023, 34, 107621.	9.0	28
2	Recent advances in electro-Fenton process and its emerging applications. Critical Reviews in Environmental Science and Technology, 2023, 53, 887-913.	12.8	57
3	High electron transfer rate and efficiency on FeO modified by sulfidation and pre-magnetization for carbamazepine degradation by heterogeneous electro-Fenton in wide pH ranges. Chemical Engineering Journal, 2022, 427, 131694.	12.7	52
4	Highly efficient dual-cathode Electro-Fenton process without aeration at a wide pH range: Simultaneously enhancing Fe(II) regeneration and mineralization efficiency. Chemical Engineering Journal, 2022, 429, 132436.	12.7	43
5	Enhanced electricity generation and tetracycline removal of bioelectro-Fenton with electroactive biofilm induced by multi external resistance. Chemosphere, 2022, 289, 133070.	8.2	5
6	Enhanced degradation of 2,4-dichlorophenoxyacetic acid by electro-fenton in flow-through system using B, Co-TNT anode. Chemosphere, 2022, 292, 133470.	8.2	12
7	A flow-through UV/electro-chlorine process for cost-effective and multifunctional purification of marine aquaculture wastewater. Journal of Environmental Chemical Engineering, 2022, 10, 107262.	6.7	10
8	Hydrogen peroxide generation from gas diffusion electrode for electrochemical degradation of organic pollutants in water: A review. Journal of Environmental Chemical Engineering, 2022, 10, 107882.	6.7	13
9	Insight into the dual-cathode peroxi-coagulation process for cost-effective treatment of organic wastewater: Increase pH application range and reduce iron sludge. Chemical Engineering Journal, 2022, 444, 136590.	12.7	9
10	Insights into transition metal encapsulated N-doped CNTs cathode for self-sufficient electrocatalytic degradation. Applied Catalysis B: Environmental, 2022, 313, 121457.	20.2	30
11	Enhanced removal of organic contaminants by novel iron–carbon and premagnetization: Performance and enhancement mechanism. Chemosphere, 2022, 303, 135060.	8.2	7
12	A critical review on cathode modification methods for efficient Electro-Fenton degradation of persistent organic pollutants. Chemical Engineering Journal, 2022, 450, 137948.	12.7	27
13	Dual strategies to enhance mineralization efficiency in innovative electrochemical advanced oxidation processes using natural air diffusion electrode: Improving both H2O2 production and utilization efficiency. Chemical Engineering Journal, 2021, 413, 127564.	12.7	34
14	MoS2 as highly efficient co-catalyst enhancing the performance of FeO based electro-Fenton process in degradation of sulfamethazine: Approach and mechanism. Chemical Engineering Journal, 2021, 403, 126361.	12.7	84
15	Strategies to enhance catalytic performance of metal–organic frameworks in sulfate radical-based advanced oxidation processes for organic pollutants removal. Chemical Engineering Journal, 2021, 403, 126346.	12.7	119
16	Iron-based persulfate activation process for environmental decontamination in water and soil. Chemosphere, 2021, 265, 129057.	8.2	122
17	Anodic oxidation of organic pollutants: Anode fabrication, process hybrid and environmental applications. Current Opinion in Electrochemistry, 2021, 26, 100659.	4.8	52
18	Degradation of 2,4-dichlorophenoxyacetic acid by a novel photoelectrocatalysis/photoelectro-Fenton process using Blue-TiO2 nanotube arrays as the anode. Chemosphere, 2021, 266, 129063.	8.2	17

#	Article	IF	CITATIONS
19	Highly cost-effective removal of 2,4-dichlorophenoxiacetic acid by peroxi-coagulation using natural air diffusion electrode. Electrochimica Acta, 2021, 377, 138079.	5.2	10
20	Hybrid electro-Fenton and peroxi-coagulation process for high removal of 2,4-dichlorophenoxiacetic acid with low iron sludge generation. Electrochimica Acta, 2021, 382, 138304.	5.2	14
21	Mechanistic Insight into the Heterogeneous Electro-Fenton/Sulfite Process for Ultraefficient Degradation of Pollutants over a Wide pH Range. ACS ES&T Water, 2021, 1, 1637-1647.	4.6	28
22	Enhanced bioenergy recovery and nutrient removal from swine wastewater using an airlift-type photosynthetic microbial fuel cell. Energy, 2021, 226, 120422.	8.8	26
23	A continuous flow-through system with integration of electrosorption and peroxi-coagulation for efficient removal of organics. Chemosphere, 2021, 274, 129983.	8.2	14
24	Trace FeCu@PC Derived from MOFs for Ultraefficient Heterogeneous Electro-Fenton Process: Enhanced Electron Transfer and Bimetallic Synergy. ACS ES&T Engineering, 2021, 1, 1311-1322.	7.6	41
25	The radical and non-radical oxidation mechanism of electrochemically activated persulfate process on different cathodes in divided and undivided cell. Journal of Hazardous Materials, 2021, 416, 125804.	12.4	18
26	Confined Fe0@CNTs for highly efficient and super stable activation of persulfate in wide pH ranges: Radicals and non-radical co-catalytic mechanism. Chemical Engineering Journal, 2021, 420, 129446.	12.7	44
27	Iron-carbon microelectrolysis for wastewater remediation: Preparation, performance and interaction mechanisms. Chemosphere, 2021, 278, 130483.	8.2	43
28	Generation of hydroxyl radicals by metal-free bifunctional electrocatalysts for enhanced organics removal. Science of the Total Environment, 2021, 791, 148107.	8.0	33
29	New insights into the effect of adsorption on catalysis in the metal-free persulfate activation process for removing organic pollutants. Separation and Purification Technology, 2021, 272, 118923.	7.9	17
30	Nanostructured electrodes for electrocatalytic advanced oxidation processes: From materials preparation to mechanisms understanding and wastewater treatment applications. Applied Catalysis B: Environmental, 2021, 296, 120332.	20.2	104
31	Nanoscale confinement in carbon nanotubes encapsulated zero-valent iron for phenolics degradation by heterogeneous Fenton: Spatial effect and structure–activity relationship. Separation and Purification Technology, 2021, 276, 119232.	7.9	16
32	Treatment of reverse osmosis concentrate from industrial coal wastewater using an electro-peroxone process with a natural air diffusion electrode. Separation and Purification Technology, 2021, 279, 119667.	7.9	17
33	A novel UV based advanced oxidation process with electrochemical co-generation of chlorine and H2O2 for carbamazepine abatement: Better performance, lower energy consumption and less DBPs formation. Chemical Engineering Journal, 2021, 425, 131857.	12.7	22
34	Photoelectrochemical degradation of 2,4-dichlorophenoxyacetic acid using electrochemically self-doped Blue TiO2 nanotube arrays with formic acid as electrolyte. Journal of Hazardous Materials, 2020, 382, 121096.	12.4	47
35	Kinetic study of the degradation of rhodamine B using a flow-through UV/electro-Fenton process with the presence of ethylenediaminetetraacetic acid. Chemosphere, 2020, 240, 124929.	8.2	20
36	Pre-magnetized FeO as heterogeneous electro-Fenton catalyst for the degradation of p-nitrophenol at neutral pH. Chemosphere, 2020, 240, 124962.	8.2	31

#	Article	IF	CITATIONS
37	Electrocatalytic generation of homogeneous and heterogeneous hydroxyl radicals for cold mineralization of anti-cancer drug Imatinib. Chemical Engineering Journal, 2020, 383, 123155.	12.7	43
38	Degradation of 2,4-dichlorophenoxyacetic acid by anodic oxidation and electro-Fenton using BDD anode: Influencing factors and mechanism. Separation and Purification Technology, 2020, 230, 115867.	7.9	63
39	Role of adsorption and oxidation in porous carbon aerogel/persulfate system for non-radical degradation of organic contaminant. Chemosphere, 2020, 241, 125066.	8.2	35
40	Solar photoelectrocatalytic degradation of ciprofloxacin at a FTO/BiVO4/MnO2 anode: Kinetics, intermediate products and degradation pathway studies. Journal of Environmental Chemical Engineering, 2020, 8, 103607.	6.7	80
41	Activated Carbon Derived from Rice Husk as Efficient Oxygen Reduction Catalyst in Microbial Fuel Cell. Electroanalysis, 2020, 32, 2969-2975.	2.9	22
42	Efficient H2O2 generation and spontaneous OH conversion for in-situ phenol degradation on nitrogen-doped graphene: Pyrolysis temperature regulation and catalyst regeneration mechanism. Journal of Hazardous Materials, 2020, 397, 122681.	12.4	47
43	Internal-micro-electrolysis-enhanced heterogeneous electro-Fenton process catalyzed by Fe/Fe3C@PC core–shell hybrid for sulfamethazine degradation. Chemical Engineering Journal, 2020, 398, 125681.	12.7	113
44	Kinetic and mechanism study of UV/pre-magnetized-Fe0/oxalate for removing sulfamethazine. Journal of Hazardous Materials, 2020, 398, 122931.	12.4	31
45	Enhancement of hydrogen peroxide production by electrochemical reduction of oxygen on carbon nanotubes modified with fluorine. Chemosphere, 2020, 259, 127423.	8.2	48
46	A flow-through electro-Fenton process using modified activated carbon fiber cathode for orange II removal. Chemosphere, 2020, 252, 126483.	8.2	64
47	Comprehensive treatment of marine aquaculture wastewater by a cost-effective flow-through electro-oxidation process. Science of the Total Environment, 2020, 722, 137812.	8.0	90
48	Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion. Nature Communications, 2020, 11, 1731.	12.8	325
49	Highly efficient and stable FeIIFeIII LDH carbon felt cathode for removal of pharmaceutical ofloxacin at neutral pH. Journal of Hazardous Materials, 2020, 393, 122513.	12.4	107
50	EDTA enhanced pre-magnetized Fe0/H2O2 process for removing sulfamethazine at neutral pH. Separation and Purification Technology, 2020, 250, 117281.	7.9	28
51	Degradation of Diclofenac Sodium by Pre-magnetization FeO/Persulfate System: Efficiency and Degradation Pathway Study. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	8
52	Electro-Fenton and photoelectro-Fenton degradation of sulfamethazine using an active gas diffusion electrode without aeration. Chemosphere, 2020, 250, 126177.	8.2	48
53	A novel stacked flow-through electro-Fenton reactor as decentralized system for the simultaneous removal of pollutants (COD, NH3-N and TP) and disinfection from domestic sewage containing chloride ions. Chemical Engineering Journal, 2020, 387, 124037.	12.7	54
54	EDTA, oxalate, and phosphate ions enhanced reactive oxygen species generation and sulfamethazine removal by zero-valent iron. Journal of Hazardous Materials, 2020, 391, 122210.	12.4	49

#	Article	IF	CITATIONS
55	High-efficiency degradation of organic pollutants with Fe, N co-doped biochar catalysts via persulfate activation. Journal of Hazardous Materials, 2020, 397, 122764.	12.4	224
56	Stable boron and cobalt co-doped TiO2 nanotubes anode for efficient degradation of organic pollutants. Journal of Hazardous Materials, 2020, 396, 122723.	12.4	39
57	A new type of continuous-flow heterogeneous electro-Fenton reactor for Tartrazine degradation. Separation and Purification Technology, 2019, 208, 76-82.	7.9	37
58	High-efficiency electrogeneration of hydrogen peroxide from oxygen reduction by carbon xerogels derived from glucose. Electrochimica Acta, 2019, 320, 134569.	5.2	22
59	Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO2 nanotubes anode. Applied Catalysis B: Environmental, 2019, 257, 117902.	20.2	154
60	Improving the yield of hydrogen peroxide on gas diffusion electrode modified with tert-butyl-anthraquinone on different carbon support. Electrochimica Acta, 2019, 320, 134552.	5.2	34
61	A highly efficient flow-through electro-Fenton system enhanced with nitrilotriacetic acid for phenol removal at neutral pH. Science of the Total Environment, 2019, 697, 134173.	8.0	29
62	A photosynthetic algal microbial fuel cell for treating swine wastewater. Environmental Science and Pollution Research, 2019, 26, 6182-6190.	5.3	54
63	A biochar modified nickel-foam cathode with iron-foam catalyst in electro-Fenton for sulfamerazine degradation. Applied Catalysis B: Environmental, 2019, 256, 117796.	20.2	142
64	Mechanism study of nitrilotriacetic acid-modified premagnetized Fe0/H2O2 for removing sulfamethazine. Chemical Engineering Journal, 2019, 374, 1180-1190.	12.7	26
65	EDTA enhanced removal of sulfamethazine by pre-magnetized FeO without oxidant addition. Chemical Engineering Journal, 2019, 372, 905-916.	12.7	27
66	Electrocatalytic destruction of pharmaceutical imatinib by electro-Fenton process with graphene-based cathode. Electrochimica Acta, 2019, 305, 285-294.	5.2	110
67	Simultaneous sulfadiazines degradation and disinfection from municipal secondary effluent by a flow-through electro-Fenton process with graphene-modified cathode. Journal of Hazardous Materials, 2019, 368, 830-839.	12.4	79
68	Simultaneous removal of tetracycline and disinfection by a flow-through electro-peroxone process for reclamation from municipal secondary effluent. Journal of Hazardous Materials, 2019, 368, 771-777.	12.4	48
69	Carbon dioxide sequestration accompanied by bioenergy generation using a bubbling-type photosynthetic algae microbial fuel cell. Bioresource Technology, 2019, 280, 95-103.	9.6	54
70	Cost-efficient improvement of coking wastewater biodegradability by multi-stages flow through peroxi-coagulation under low current load. Water Research, 2019, 154, 336-348.	11.3	59
71	A carbon nanotube-confined iron modified cathode with prominent stability and activity for heterogeneous electro-Fenton reactions. Journal of Materials Chemistry A, 2019, 7, 24408-24419.	10.3	84
72	A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. Journal of Hazardous Materials, 2019, 362, 436-450.	12.4	353

#	Article	IF	CITATIONS
73	Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges. Renewable and Sustainable Energy Reviews, 2019, 103, 13-29.	16.4	171
74	Enhanced activation of hydrogen peroxide using nitrogen doped graphene for effective removal of herbicide 2,4-D from water by iron-free electrochemical advanced oxidation. Electrochimica Acta, 2019, 297, 582-592.	5.2	72
75	Enhanced removal of emerging contaminants using persulfate activated by UV and pre-magnetized FeO. Chemical Engineering Journal, 2019, 361, 908-918.	12.7	52
76	Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in-situ degradation of organic pollutant. Applied Catalysis B: Environmental, 2019, 245, 583-595.	20.2	204
77	Enhanced removal of antibiotics from secondary wastewater effluents by novel UV/pre-magnetized Fe0/H2O2 process. Water Research, 2019, 153, 144-159.	11.3	115
78	Pre-magnetized FeO activated persulphate for the degradation of nitrobenzene in groundwater. Separation and Purification Technology, 2019, 212, 555-562.	7.9	23
79	Enhancement of CO2 biofixation and bioenergy generation using a novel airlift type photosynthetic microbial fuel cell. Bioresource Technology, 2019, 272, 501-509.	9.6	22
80	Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment. Applied Catalysis B: Environmental, 2018, 235, 103-129.	20.2	631
81	Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresource Technology, 2018, 261, 428-440.	9.6	146
82	Enhanced degradation of 2,4-dichlorophenoxyacetic acid by pre-magnetization Fe-C activated persulfate: Influential factors, mechanism and degradation pathway. Journal of Hazardous Materials, 2018, 353, 454-465.	12.4	73
83	Indirect electrochemical oxidation of 2,4-dichlorophenoxyacetic acid using electrochemically-generated persulfate. Chemosphere, 2018, 204, 163-169.	8.2	65
84	Facile and fast polyaniline-directed synthesis of monolithic carbon cryogels from glucose. Microporous and Mesoporous Materials, 2018, 265, 26-34.	4.4	14
85	Highly efficient in-situ metal-free electrochemical advanced oxidation process using graphite felt modified with N-doped graphene. Chemical Engineering Journal, 2018, 338, 700-708.	12.7	98
86	Significant enhancement in treatment of salty wastewater by pre-magnetization Fe0/H2O2 process. Chemical Engineering Journal, 2018, 339, 411-423.	12.7	58
87	An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 2018, 197, 210-227.	8.2	814
88	Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnology Advances, 2018, 36, 1316-1327.	11.7	247
89	KOH activated N-doped novel carbon aerogel as efficient metal-free oxygen reduction catalyst for microbial fuel cells. Chemical Engineering Journal, 2018, 348, 775-785.	12.7	91
90	Rolling-made gas diffusion electrode with carbon nanotube for electro-Fenton degradation of acetylsalicylic acid. Chemosphere, 2018, 206, 439-446.	8.2	80

#	Article	IF	CITATIONS
91	Disinfection of simulated ballast water by a flow-through electro-peroxone process. Chemical Engineering Journal, 2018, 348, 485-493.	12.7	50
92	Enhanced degradation of Rhodamine B by pre-magnetized Fe 0 /PS process: Parameters optimization, mechanism and interferences of ions. Separation and Purification Technology, 2018, 203, 66-74.	7.9	27
93	Highly energy-efficient removal of acrylonitrile by peroxi-coagulation with modified graphite felt cathode: Influence factors, possible mechanism. Chemical Engineering Journal, 2018, 343, 467-476.	12.7	58
94	Nitrogen-doped activated carbon as metal-free oxygen reduction catalyst for cost-effective rolling-pressed air-cathode in microbial fuel cells. Fuel, 2018, 223, 422-430.	6.4	41
95	Removal of tetracycline by coupling of flow-through electro-Fenton and in-situ regenerative active carbon felt adsorption. Chemical Engineering Journal, 2018, 335, 685-692.	12.7	97
96	Degradation of diclofenac by H2O2 activated with pre-magnetization FeO: Influencing factors and degradation pathways. Chemosphere, 2018, 212, 853-862.	8.2	51
97	Degradation and mechanism of 2,4-dichlorophenoxyacetic acid (2,4-D) by thermally activated persulfate oxidation. Chemosphere, 2018, 212, 784-793.	8.2	78
98	Enhancement of bioelectricity generation via heterologous expression of IrrE in Pseudomonas aeruginosa-inoculated MFCs. Biosensors and Bioelectronics, 2018, 117, 23-31.	10.1	26
99	Oxidation of Rhodamine B by persulfate activated with porous carbon aerogel through a non-radical mechanism. Journal of Hazardous Materials, 2018, 358, 53-61.	12.4	130
100	Enhanced activation of persulfate by carbohydrate-derived carbon cryogels for effective removal of organic pollutants. Chemical Engineering Journal, 2018, 352, 673-681.	12.7	35
101	Synergistic degradation of antibiotic sulfamethazine by novel pre-magnetized Fe0/PS process enhanced by ultrasound. Chemical Engineering Journal, 2018, 354, 777-789.	12.7	73
102	Easily tunable hydrogel-derived heteroatom-doped hierarchically porous carbons as multifunctional materials for supercapacitors, CO2 capture and dye removal. Microporous and Mesoporous Materials, 2018, 271, 92-99.	4.4	13
103	Electrochemical advanced oxidation processes for the abatement of persistent organic pollutants. Chemosphere, 2018, 209, 17-19.	8.2	19
104	Highly efficient persulfate oxidation process activated with pre-magnetization Fe 0. Chemical Engineering Journal, 2017, 318, 50-56.	12.7	38
105	Highly efficient advanced oxidation processes (AOPs) based on pre-magnetization Fe 0 for wastewater treatment. Separation and Purification Technology, 2017, 178, 49-55.	7.9	60
106	Ultrahigh yield of hydrogen peroxide on graphite felt cathode modified with electrochemically exfoliated graphene. Journal of Materials Chemistry A, 2017, 5, 8070-8080.	10.3	150
107	Cost-Effective Flow-Through Reactor in Electro-Fenton. Handbook of Environmental Chemistry, 2017, , 241-261.	0.4	1
108	Cathode Modification to Improve Electro-Fenton Performance. Handbook of Environmental Chemistry, 2017, , 175-203.	0.4	1

Μινςημα Ζηου

#	Article	IF	CITATIONS
109	Preparation of transition metal composite graphite felt cathode for efficient heterogeneous electro-Fenton process. Environmental Science and Pollution Research, 2017, 24, 1122-1132.	5.3	39
110	Pre-magnetized Fe0/persulfate for notably enhanced degradation and dechlorination of 2,4-dichlorophenol. Chemical Engineering Journal, 2017, 307, 1092-1104.	12.7	128
111	A highly energy-efficient flow-through electro-Fenton process for organic pollutants degradation. Electrochimica Acta, 2016, 200, 222-230.	5.2	156
112	A novel vertical-flow electro-Fenton reactor for organic wastewater treatment. Chemical Engineering Journal, 2016, 298, 55-67.	12.7	143
113	Architectural design of hierarchically meso–macroporous carbon for microbial fuel cell anodes. RSC Advances, 2016, 6, 27993-27998.	3.6	12
114	Novel rolling-made gas-diffusion electrode loading trace transition metal for efficient heterogeneous electro-Fenton-like. Journal of Environmental Chemical Engineering, 2016, 4, 4400-4408.	6.7	38
115	Novel Fenton-like process (pre-magnetized Fe0/H2O2) for efficient degradation of organic pollutants. Separation and Purification Technology, 2016, 169, 83-92.	7.9	50
116	Cost-effective copper removal by electrosorption powered by microbial fuel cells. Bioprocess and Biosystems Engineering, 2016, 39, 511-519.	3.4	8
117	Titanium dioxide nanoparticles modified three dimensional ordered macroporous carbon for improved energy output in microbial fuel cells. Electrochimica Acta, 2016, 190, 463-470.	5.2	40
118	Simultaneous electricity generation and tetracycline removal in continuous flow electrosorption driven by microbial fuel cells. RSC Advances, 2015, 5, 49513-49520.	3.6	28
119	Modified iron-carbon as heterogeneous electro-Fenton catalyst for organic pollutant degradation in near neutral pH condition: Characterization, degradation activity and stability. Electrochimica Acta, 2015, 160, 254-262.	5.2	68
120	Characterization of a novel strain phylogenetically related to Kocuria rhizophila and its chemical modification to improve performance of microbial fuel cells. Biosensors and Bioelectronics, 2015, 69, 113-120.	10.1	38
121	Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H 2 O 2 electro-generation without external aeration. Electrochimica Acta, 2015, 163, 182-189.	5.2	262
122	A cost-effective polyurethane based activated carbon sponge anode for high-performance microbial fuel cells. RSC Advances, 2015, 5, 84269-84275.	3.6	16
123	Microbial fuel cells for biosensor applications. Biotechnology Letters, 2015, 37, 2357-2364.	2.2	102
124	Heterogeneous electro-Fenton using modified iron–carbon as catalyst for 2,4-dichlorophenol degradation: Influence factors, mechanism and degradation pathway. Water Research, 2015, 70, 414-424.	11.3	254
125	A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton. Chemical Engineering Journal, 2015, 263, 92-100.	12.7	218
126	Bioelectrochemistry of Microbial Fuel Cells and their Potential Applications in Bioenergy. , 2014, ,		9

131-152.

#	Article	IF	CITATIONS
127	A first preâ€pilot system for the combined treatment of dye pollutants by electrocoagulation/ <scp>EAOPs</scp> . Journal of Chemical Technology and Biotechnology, 2014, 89, 1136-1144.	3.2	21
128	Chemically modified graphite felt as an efficient cathode in electro-Fenton for p-nitrophenol degradation. Electrochimica Acta, 2014, 140, 376-383.	5.2	192
129	Heterogeneous Fenton catalytic degradation of phenol based on controlled release of magnetic nanoparticles. Chemical Engineering Journal, 2014, 242, 1-9.	12.7	80
130	Simultaneous wastewater treatment, electricity generation and biomass production by an immobilized photosynthetic algal microbial fuel cell. Bioprocess and Biosystems Engineering, 2014, 37, 873-880.	3.4	46
131	A Novel Electro-Fenton Process with H ₂ O ₂ Generation in a Rotating Disk Reactor for Organic Pollutant Degradation. Environmental Science and Technology Letters, 2014, 1, 320-324.	8.7	176
132	Two-step mineralization of Tartrazine solutions: Study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes. Applied Catalysis B: Environmental, 2014, 150-151, 116-125.	20.2	137
133	Nanoscale zero-valent iron/AC as heterogeneous Fenton catalysts in three-dimensional electrode system. Environmental Science and Pollution Research, 2014, 21, 8398-8405.	5.3	36
134	Effect of matrix on the electrochemical characteristics of TiO2 nanotube array-based PbO2 electrode for pollutant degradation. Environmental Science and Pollution Research, 2014, 21, 8476-8484.	5.3	16
135	Recent updates on electrochemical degradation of bio-refractory organic pollutants using BDD anode: a mini review. Environmental Science and Pollution Research, 2014, 21, 8417-8431.	5.3	93
136	Efficient degradation of p-nitrophenol by electro-oxidation on Fe doped Ti/TiO2 nanotube/PbO2 anode. Separation and Purification Technology, 2014, 128, 67-71.	7.9	54
137	Electrochemical surface modification of carbon mesh anode to improve the performance of air-cathode microbial fuel cells. Bioprocess and Biosystems Engineering, 2013, 36, 1889-1896.	3.4	18
138	Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials. Environmental Technology (United Kingdom), 2013, 34, 1915-1928.	2.2	21
139	Reduction of Cr(VI) in aqueous solution with DC diaphragm glow discharge. Electrochimica Acta, 2013, 112, 692-697.	5.2	16
140	Electro-Fenton degradation of p-nitrophenol using the anodized graphite felts. Chemical Engineering Journal, 2013, 233, 185-192.	12.7	161
141	Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode. Separation and Purification Technology, 2013, 111, 131-136.	7.9	189
142	Recent advances in microbial fuel cells (<scp>MFCs</scp>) and microbial electrolysis cells (<scp>MECs</scp>) for wastewater treatment, bioenergy and bioproducts. Journal of Chemical Technology and Biotechnology, 2013, 88, 508-518.	3.2	211
143	Electrosorption driven by microbial fuel cells without electric grid energy consumption for simultaneous phenol removal and wastewater treatment. Electrochemistry Communications, 2013, 34, 121-124.	4.7	16
144	A new electrochemically active bacterium phylogenetically related to Tolumonas osonensis and power performance in MFCs. Bioresource Technology, 2013, 139, 141-148.	9.6	62

#	Article	IF	CITATIONS
145	Electrochemical scission of C–S bond in ethanethiol on a modified β-PbO2 anode in aqueous solution. Separation and Purification Technology, 2013, 109, 72-76.	7.9	8
146	Decolorization of acid orange 7 with DC diaphragm glow discharge. Electrochimica Acta, 2013, 103, 237-242.	5.2	7
147	Electrosorption driven by microbial fuel cells to remove phenol without external power supply. Bioresource Technology, 2013, 150, 271-277.	9.6	30
148	Three-dimensional electrochemical process for wastewater treatment: A general review. Chemical Engineering Journal, 2013, 228, 455-467.	12.7	436
149	TiO2-NTs/SnO2-Sb anode for efficient electrocatalytic degradation of organic pollutants: Effect of TiO2-NTs architecture. Separation and Purification Technology, 2013, 102, 180-186.	7.9	83
150	Removal of Cr(VI) with Cogeneration of Electricity by an Alkaline Fuel Cell Reactor. Journal of Physical Chemistry C, 2013, 117, 14479-14484.	3.1	32
151	Fe3O4 nanoparticles as an efficient heterogeneous Fenton catalyst for phenol removal at relatively wide pH values. Water Science and Technology, 2013, 68, 2367-2373.	2.5	27
152	Hydrazine hydrate chemical reduction as an effective anode modification method to improve the performance of microbial fuel cells. Journal of Chemical Technology and Biotechnology, 2013, 88, 2075-2081.	3.2	1
153	Treatment of Reverse Osmosis Concentrates Using a Three-dimensional Electrode Reactor. Current Organic Chemistry, 2012, 16, 2091-2096.	1.6	10
154	Editorial (Hot Topic: Electrochemical Oxidation and Mechanism - Part I). Current Organic Chemistry, 2012, 16, 1950-1950.	1.6	0
155	Editorial: [Hot Topic: Electro-Fenton and Application - Part II]. Current Organic Chemistry, 2012, 16, 2053-2053.	1.6	Ο
156	On the Kinetics and Mechanism of Electrochemical Decomposition of 3- Chloropyridine in Aqueous Solution. Current Organic Chemistry, 2012, 16, 1972-1977.	1.6	4
157	Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. Journal of Power Sources, 2012, 214, 216-219.	7.8	108
158	Coupling of anodic and cathodic modification for increased power generation in microbial fuel cells. Journal of Power Sources, 2012, 219, 358-363.	7.8	26
159	Microbial Fuel Cells for Bioenergy and Bioproducts. Green Energy and Technology, 2012, , 131-171.	0.6	15
160	Application of glow discharge plasma for wastewater treatment. Electrochimica Acta, 2012, 83, 501-512.	5.2	142
161	An improved multi-anode contact glow discharge electrolysis reactor for dye discoloration. Electrochimica Acta, 2012, 59, 474-478.	5.2	33
162	Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells. Biochemical Engineering Journal, 2012, 60, 151-155.	3.6	119

#	Article	IF	CITATIONS
163	Degradation of organics in reverse osmosis concentrate by electro-Fenton process. Journal of Hazardous Materials, 2012, 215-216, 287-293.	12.4	186
164	A combined photocatalytic determination system for chemical oxygen demand with a highly oxidative reagent. Analytica Chimica Acta, 2011, 686, 133-143.	5.4	16
165	Treatment of high-salinity reverse osmosis concentrate by electrochemical oxidation on BDD and DSA electrodes. Desalination, 2011, 277, 201-206.	8.2	116
166	An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 2011, 196, 4427-4435.	7.8	688
167	The combination of rotating disk photocatalytic reactor and TiO2 nanotube arrays for environmental pollutants removal. Journal of Hazardous Materials, 2011, 186, 1374-1383.	12.4	51
168	A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes. Separation and Purification Technology, 2011, 78, 290-297.	7.9	140
169	Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation. Journal of Hazardous Materials, 2010, 173, 724-730.	12.4	73
170	Amperometric Determination of Chemical Oxygen Demand via the Functional Combination of Three Digestion Types. Electroanalysis, 2010, 22, 2947-2959.	2.9	5
171	A novel photoelectrocatalytic system for organic contaminant degradation on a TiO2 nanotube (TNT)/Ti electrode. Electrochimica Acta, 2010, 55, 5091-5099.	5.2	23
172	Combined potential of three catalysis types on TiO2 nanotube (TNT)/Ti and nanoparticle (TNP)/Ti photoelectrodes: A comparative study. Applied Catalysis A: General, 2010, 385, 114-122.	4.3	16
173	Degradation of trichloroethylene using solvent-responsive polymer coated Fe nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 369, 232-239.	4.7	23
174	Metomyl Degradation by Electro-Fenton and Electro-Fenton-Like Processes: A Kinetics Study of the Effect of the Nature and Concentration of Some Transition Metal Ions As Catalyst. Journal of Physical Chemistry A, 2010, 114, 10605-10611.	2.5	107
175	Novel NaY zeolite-supported nanoscale zero-valent iron as an efficient heterogeneous Fenton catalyst. Catalysis Communications, 2010, 11, 937-941.	3.3	128
176	A comparative study of azo dye decolorization by electroâ€Fenton in two common electrolytes. Journal of Chemical Technology and Biotechnology, 2009, 84, 1544-1549.	3.2	36
177	Efficient photoelectrocatalytic activity of TiO2/Ti anode fabricated by metalorganic chemical vapor deposition (MOCVD). Electrochemistry Communications, 2009, 11, 921-924.	4.7	22
178	Enhancement on the simultaneous removal of nitrate and organic pollutants from groundwater by a three-dimensional bio-electrochemical reactor. Bioresource Technology, 2009, 100, 4662-4668.	9.6	77
179	A comparison of coagulant dosing options for the remediation of molasses process water. Separation and Purification Technology, 2008, 58, 347-352.	7.9	40
180	Preparation of high efficient photoelectrode of N–F-codoped TiO2 nanotubes. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194, 152-160.	3.9	78

#	Article	IF	CITATIONS
181	Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges. Journal of Hazardous Materials, 2008, 150, 713-722.	12.4	61
182	Degradation of cationic red X-GRL by electrochemical oxidation on modified PbO2 electrode. Journal of Hazardous Materials, 2008, 153, 357-363.	12.4	71
183	Improvement of diagnostic techniques and electrical circuit in azo dye degradation by high voltage electrical discharge. Energy Conversion and Management, 2008, 49, 2254-2263.	9.2	15
184	Kinetic model of 4-CP degradation by Fenton/O2 system. Water Research, 2007, 41, 1121-1133.	11.3	59
185	Pulsed discharge plasma induced Fenton-like reactions for the enhancement of the degradation of 4-chlorophenol in water. Chemosphere, 2007, 66, 2185-2192.	8.2	70
186	Degradation mechanisms of 4-chlorophenol in a novel gas–liquid hybrid discharge reactor by pulsed high voltage system with oxygen or nitrogen bubbling. Chemosphere, 2007, 67, 702-711.	8.2	77
187	Decolorization of cationic red X-GRL by wet air oxidation: Performance optimization and degradation mechanism. Chemosphere, 2007, 68, 1135-1142.	8.2	35
188	Oxygen as a promoter for efficient degradation of organic pollutants by high-temperature and high-pressure electrochemistry. Chemical Communications, 2007, , 2645.	4.1	9
189	Degradation of 4-chlorophenol in different gas–liquid electrical discharge reactors. Chemical Engineering Journal, 2007, 132, 325-333.	12.7	38
190	Degradation of azo dye by three clean advanced oxidation processes: Wet oxidation, electrochemical oxidation and wet electrochemical oxidation—A comparative study. Electrochimica Acta, 2007, 53, 1902-1910.	5.2	86
191	The role of oxygen in the degradation of p-chlorophenol by Fenton system. Journal of Hazardous Materials, 2007, 139, 108-115.	12.4	77
192	Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Separation and Purification Technology, 2007, 57, 380-387.	7.9	285
193	Wastewater Treatment Using a Heterogeneous Magnetite (Fe3O4) Non-Thermal Plasma Process. Plasma Processes and Polymers, 2007, 4, 455-462.	3.0	34
194	Fabrication of multi-non-metal-doped TiO2 nanotubes by anodization in mixed acid electrolyte. Materials Research Bulletin, 2007, 42, 2230-2236.	5.2	44
195	Formations of Active Species and By-Products in Water by Pulsed High-Voltage Discharge. Plasma Chemistry and Plasma Processing, 2007, 27, 337-348.	2.4	61
196	A novel advanced oxidation process—wet electro-catalytic oxidation for high concentrated organic wastewater treatment. Science Bulletin, 2007, 52, 1724-1727.	1.7	10
197	Nitrate removal from groundwater by a novel three-dimensional electrode biofilm reactor. Electrochimica Acta, 2007, 52, 6052-6059.	5.2	131
198	Co-deposition of photocatalytic Fe doped TiO2 coatings by MOCVD. Catalysis Communications, 2006, 7, 427-431.	3.3	99

Μινςημα Ζηου

#	Article	IF	CITATIONS
199	An improved UV/Fe3+ process by combination with electrocatalysis for p-nitrophenol degradation. Chemosphere, 2006, 63, 1032-1040.	8.2	29
200	The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor. Chemosphere, 2006, 65, 1197-1203.	8.2	68
201	TiO2 photocatalyst deposition by MOCVD on activated carbon. Carbon, 2006, 44, 325-333.	10.3	86
202	Role of the intermediates in the degradation of phenolic compounds by Fenton-like process. Journal of Hazardous Materials, 2006, 136, 859-865.	12.4	117
203	Wet electrolytic oxidation of cationic red X-GRL. Journal of Hazardous Materials, 2006, 137, 1870-1874.	12.4	20
204	Effect of Sodium Ion Concentration on Hydrogen Production from Sucrose by Anaerobic Hydrogen-producing Granular Sludge. Chinese Journal of Chemical Engineering, 2006, 14, 511-517.	3.5	43
205	Preparation of anatase TiO2 supported on alumina by different metal organic chemical vapor deposition methods. Applied Catalysis A: General, 2005, 282, 285-293.	4.3	62
206	Preparation of photocatalytic TiO2 coatings of nanosized particles on activated carbon by AP-MOCVD. Carbon, 2005, 43, 1700-1708.	10.3	162
207	-Nitrophenol abatement by the combination of electrocatalysis and activated carbon. Chemical Engineering Journal, 2005, 106, 83-90.	12.7	33
208	Preparation of an Ag–TiO2 photocatalyst coated on activated carbon by MOCVD. Materials Chemistry and Physics, 2005, 91, 73-79.	4.0	68
209	Enhancing the concentration of TiO2 photocatalyst on the external surface of activated carbon by MOCVD. Materials Research Bulletin, 2005, 40, 1899-1904.	5.2	28
210	Activated carbon adsorption-advanced electro-oxidative regeneration for the treatment of biorefractory organic pollutants. Science Bulletin, 2005, 50, 490-492.	1.7	3
211	Activated carbon adsorption-advanced electro-oxidative regeneration for the treatment of biorefractory organic pollutants. Science Bulletin, 2005, 50, 489.	1.7	9
212	Synergistic effects of liquid and gas phase discharges using pulsed high voltage for dyes degradation in the presence of oxygen. Chemosphere, 2005, 60, 405-411.	8.2	62
213	Long Life Modified Lead Dioxide Anode for Organic Wastewater Treatment:Â Electrochemical Characteristics and Degradation Mechanism. Environmental Science & Technology, 2005, 39, 363-370.	10.0	251
214	Novel photocatalysis oxidation system UV/Fe2+/air to degrade 4-CP wastewater. Science Bulletin, 2005, 50, 2118-2120.	9.0	3
215	Long life modified lead dioxide anode for organic wastewater treatment: electrochemical characteristics and degradation mechanism. Environmental Science & Technology, 2005, 39, 363-70.	10.0	7
216	A novel fluidized electrochemical reactor for organic pollutant abatement. Separation and Purification Technology, 2004, 34, 81-88.	7.9	47

#	Article	IF	CITATIONS
217	ELECTROCATALYTIC DEGRADATION OF PHENOL IN ACIDIC AND SALINE WASTEWATER. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2002, 37, 1263-1275.	1.7	37
218	Synergetic effects of anodic–cathodic electrocatalysis for phenol degradation in the presence of iron(II). Chemosphere, 2002, 48, 1089-1096.	8.2	20
219	Removal of phenolic compounds by electroassisted advanced process for wastewater purification. Korean Journal of Chemical Engineering, 2002, 19, 866-870.	2.7	28
220	Partial Degradation of Phenol by Advanced Electrochemical Oxidation Process. Environmental Science & Comparison Sc	10.0	170