Janaina Mourao-Miranda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3980475/publications.pdf Version: 2024-02-01

JANAINA MOURAO-MIRANDA

#	Article	IF	CITATIONS
1	A hierarchical Bayesian model to find brain-behaviour associations in incomplete data sets. NeuroImage, 2022, 249, 118854.	4.2	1
2	Will artificial intelligence eventually replace psychiatrists?. British Journal of Psychiatry, 2021, 218, 131-134.	2.8	15
3	How do you perceive threat? It's all in your pattern of brain activity. Brain Imaging and Behavior, 2020, 14, 2251-2266.	2.1	5
4	Multiple Holdouts With Stability: Improving the Generalizability of Machine Learning Analyses of Brain–Behavior Relationships. Biological Psychiatry, 2020, 87, 368-376.	1.3	32
5	Realizing the Clinical Potential of Computational Psychiatry: Report From the Banbury Center Meeting, February 2019. Biological Psychiatry, 2020, 88, e5-e10.	1.3	36
6	Fast temporal dynamics and causal relevance of face processing in the human temporal cortex. Nature Communications, 2020, 11, 656.	12.8	28
7	Finding the needle in a high-dimensional haystack: Canonical correlation analysis for neuroscientists. Neurolmage, 2020, 216, 116745.	4.2	163
8	Brain-behaviour modes of covariation in healthy and clinically depressed young people. Scientific Reports, 2019, 9, 11536.	3.3	31
9	170. What Can Machine Learning and Neuroimaging Techniques Bring to Psychiatry?. Biological Psychiatry, 2019, 85, S70.	1.3	0
10	Evidence For Bias Of Genetic Ancestry In Resting State Functional MRI. , 2019, , .		2
11	Predicting anxiety from wholebrain activity patterns to emotional faces in young adults: a machine learning approach. NeuroImage: Clinical, 2019, 23, 101813.	2.7	26
12	Predicting Bipolar Disorder Risk Factors in Distressed Young Adults From Patterns of Brain Activation to Reward: A Machine Learning Approach. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 726-733.	1.5	10
13	Combining heterogeneous data sources for neuroimaging based diagnosis: re-weighting and selecting what is important. Neurolmage, 2019, 195, 215-231.	4.2	16
14	ABCD Neurocognitive Prediction Challenge 2019: Predicting Individual Residual Fluid Intelligence Scores from Cortical Grey Matter Morphology. Lecture Notes in Computer Science, 2019, , 114-123.	1.3	6
15	ABCD Neurocognitive Prediction Challenge 2019: Predicting Individual Fluid Intelligence Scores from Structural MRI Using Probabilistic Segmentation and Kernel Ridge Regression. Lecture Notes in Computer Science, 2019, , 133-142.	1.3	18
16	Making Individual Prognoses in Psychiatry Using Neuroimaging and Machine Learning. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2018, 3, 798-808.	1.5	105
17	Decoding negative affect personality trait from patterns of brain activation to threat stimuli. NeuroImage, 2017, 145, 337-345.	4.2	30
18	Predictive modelling using neuroimaging data in the presence of confounds. NeuroImage, 2017, 150, 23-49.	4.2	99

#	Article	IF	CITATIONS
19	Prediction of Individual Differences from Neuroimaging Data. NeuroImage, 2017, 145, 135-136.	4.2	23
20	Multi-center MRI prediction models: Predicting sex and illness course in first episode psychosis patients. NeuroImage, 2017, 145, 246-253.	4.2	43
21	Sparsity Is Better with Stability: Combining Accuracy and Stability for Model Selection in Brain Decoding. Frontiers in Neuroscience, 2017, 11, 62.	2.8	28
22	A multiple hold-out framework for Sparse Partial Least Squares. Journal of Neuroscience Methods, 2016, 271, 182-194.	2.5	40
23	A multimodal multiple kernel learning approach to Alzheimer's disease detection. , 2016, , .		10
24	Prediction of clinical scores from neuroimaging data with censored likelihood gaussian processes. , 2016, , .		1
25	Decoding intracranial EEG data with multiple kernel learning method. Journal of Neuroscience Methods, 2016, 261, 19-28.	2.5	33
26	Can Emotional and Behavioral Dysregulation in Youth Be Decoded from Functional Neuroimaging?. PLoS ONE, 2016, 11, e0117603.	2.5	18
27	Leveraging Clinical Data to Enhance Localization of Brain Atrophy. Lecture Notes in Computer Science, 2016, , 60-68.	1.3	0
28	Multivariate Effect Ranking via Adaptive Sparse PLS. , 2015, , .		2
29	A Comparison of Strategies for Incorporating Nuisance Variables into Predictive Neuroimaging Models. , 2015, , .		8
30	Predicting Numerical Processing in Naturalistic Settings from Controlled Experimental Conditions. , 2015, , .		1
31	Sparse network-based models for patient classification using fMRI. NeuroImage, 2015, 105, 493-506.	4.2	151
32	SCoRS—A Method Based on Stability for Feature Selection and Mapping in Neuroimaging. IEEE Transactions on Medical Imaging, 2014, 33, 85-98.	8.9	57
33	Correction to "SCoRS—A Method Based on Stability for Feature Selection and Mapping in Neuroimaging―[Jan 14 85-98]. IEEE Transactions on Medical Imaging, 2014, 33, 794-794.	8.9	3
34	A novel approach to probabilistic biomarkerâ€based classification using functional nearâ€infrared spectroscopy. Human Brain Mapping, 2013, 34, 1102-1114.	3.6	30
35	PRoNTo: Pattern Recognition for Neuroimaging Toolbox. Neuroinformatics, 2013, 11, 319-337.	2.8	367

36 Sparse Network-Based Models for Patient Classification Using fMRI. , 2013, , .

54

#	Article	IF	CITATIONS
37	Stability-Based Multivariate Mapping Using SCoRS. , 2013, , .		2
38	What Does Brain Response to Neutral Faces Tell Us about Major Depression? Evidence from Machine Learning and fMRI. PLoS ONE, 2013, 8, e60121.	2.5	23
39	Automated, High Accuracy Classification of Parkinsonian Disorders: A Pattern Recognition Approach. PLoS ONE, 2013, 8, e69237.	2.5	39
40	Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. Psychological Medicine, 2012, 42, 1037-1047.	4.5	116
41	Structured Sparsity Models for Brain Decoding from fMRI Data. , 2012, , .		37
42	Diagnostic neuroimaging across diseases. Neurolmage, 2012, 61, 457-463.	4.2	240
43	Pattern Recognition and Functional Neuroimaging Help to Discriminate Healthy Adolescents at Risk for Mood Disorders from Low Risk Adolescents. PLoS ONE, 2012, 7, e29482.	2.5	60
44	Measuring Abnormal Brains: Building Normative Rules in Neuroimaging Using One-Class Support Vector Machines. Frontiers in Neuroscience, 2012, 6, 178.	2.8	17
45	Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression. Bipolar Disorders, 2012, 14, 451-460.	1.9	71
46	A New Feature Selection Method Based on Stability Theory – Exploring Parameters Space to Evaluate Classification Accuracy in Neuroimaging Data. Lecture Notes in Computer Science, 2012, , 51-59.	1.3	2
47	Patient classification as an outlier detection problem: An application of the One-Class Support Vector Machine. NeuroImage, 2011, 58, 793-804.	4.2	112
48	Utilizing temporal information in fMRI decoding: Classifier using kernel regression methods. NeuroImage, 2011, 58, 560-571.	4.2	26
49	Pattern Classification of Working Memory Networks Reveals Differential Effects of Methylphenidate, Atomoxetine, and Placebo in Healthy Volunteers. Neuropsychopharmacology, 2011, 36, 1237-1247.	5.4	81
50	Integrating Neurobiological Markers of Depression. Archives of General Psychiatry, 2010, 68, 361.	12.3	130
51	Describing the Brain in Autism in Five Dimensions—Magnetic Resonance Imaging-Assisted Diagnosis of Autism Spectrum Disorder Using a Multiparameter Classification Approach. Journal of Neuroscience, 2010, 30, 10612-10623.	3.6	369
52	Investigating the predictive value of whole-brain structural MR scans in autism: A pattern classification approach. NeuroImage, 2010, 49, 44-56.	4.2	361
53	Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. NeuroImage, 2010, 49, 2178-2189.	4.2	218
54	Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease. NeuroImage, 2010, 50, 162-174.	4.2	287

#	Article	IF	CITATIONS
55	Quantifying the Information Content of Brain Voxels Using Target Information, Gaussian Processes and Recursive Feature Elimination. , 2010, , .		4
56	Motor imagery of voluntary coughing: a functional MRI study using a support vector machine. NeuroReport, 2010, 21, 980-984.	1.2	3
57	Dynamic Changes in the Mental Rotation Network Revealed by Pattern Recognition Analysis of fMRI Data. Journal of Cognitive Neuroscience, 2009, 21, 890-904.	2.3	28
58	An fMRI normative database for connectivity networks using one lass support vector machines. Human Brain Mapping, 2009, 30, 1068-1076.	3.6	17
59	Correlation-based multivariate analysis of genetic influence on brain volume. Neuroscience Letters, 2009, 450, 281-286.	2.1	23
60	Evaluating SVM and MLDA in the extraction of discriminant regions for mental state prediction. NeuroImage, 2009, 46, 105-114.	4.2	45
61	Neural correlates of sad faces predict clinical remission to cognitive behavioural therapy in depression. NeuroReport, 2009, 20, 637-641.	1.2	129
62	The impact of functional connectivity changes on support vector machines mapping of fMRI data. Journal of Neuroscience Methods, 2008, 172, 94-104.	2.5	9
63	Pattern Classification of Sad Facial Processing: Toward the Development of Neurobiological Markers in Depression. Biological Psychiatry, 2008, 63, 656-662.	1.3	298
64	Bayesian decoding of brain images. NeuroImage, 2008, 39, 181-205.	4.2	171
65	Neuroanatomy of verbal working memory as a diagnostic biomarker for depression. NeuroReport, 2008, 19, 1507-1511.	1.2	111
66	Dynamic discrimination analysis: A spatial–temporal SVM. NeuroImage, 2007, 36, 88-99.	4.2	110
67	Unsupervised analysis of fMRI data using kernel canonical correlation. NeuroImage, 2007, 37, 1250-1259.	4.2	94
68	Using Image Stimuli to Drive fMRI Analysis. Lecture Notes in Computer Science, 2007, , 477-486.	1.3	1
69	The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data. NeuroImage, 2006, 33, 1055-1065.	4.2	117
70	Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data. NeuroImage, 2005, 28, 980-995.	4.2	637
71	Contributions of stimulus valence and arousal to visual activation during emotional perception. NeuroImage, 2003, 20, 1955-1963.	4.2	108
72	The Neural Correlates of Moral Sensitivity: A Functional Magnetic Resonance Imaging Investigation of Basic and Moral Emotions. Journal of Neuroscience, 2002, 22, 2730-2736.	3.6	622