
Richard D Mooney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3979668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-dimensional learned feature spaces quantify individual and group differences in vocal repertoires. ELife, 2021, 10, .	6.0	52
2	Neural dynamics underlying birdsong practice and performance. Nature, 2021, 599, 635-639.	27.8	21
3	The neurobiology of innate, volitional and learned vocalizations in mammals and birds. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190054.	4.0	84
4	The neurobiology of innate and learned vocalizations in rodents and songbirds. Current Opinion in Neurobiology, 2020, 64, 24-31.	4.2	32
5	Editorial overview: Neurobiology of behavior. Current Opinion in Neurobiology, 2020, 60, iii-v.	4.2	0
6	Circuit and synaptic organization of forebrain-to-midbrain pathways that promote and suppress vocalization. ELife, 2020, 9, .	6.0	57
7	Discrete Evaluative and Premotor Circuits Enable Vocal Learning in Songbirds. Neuron, 2019, 104, 559-575.e6.	8.1	40
8	A Specialized Neural Circuit Gates Social Vocalizations in the Mouse. Neuron, 2019, 103, 459-472.e4.	8.1	122
9	A common neural circuit mechanism for internally guided and externally reinforced forms of motor learning. Nature Neuroscience, 2018, 21, 589-597.	14.8	88
10	The Song Remains the Same. Trends in Neurosciences, 2018, 41, 167-170.	8.6	1
11	A mesocortical dopamine circuit enables the cultural transmission of vocal behaviour. Nature, 2018, 563, 117-120.	27.8	89
12	A cortical filter that learns to suppress the acoustic consequences of movement. Nature, 2018, 561, 391-395.	27.8	159
13	How Movement Modulates Hearing. Annual Review of Neuroscience, 2018, 41, 553-572.	10.7	107
14	MIN1PIPE: A Miniscope 1-Photon-Based Calcium Imaging Signal Extraction Pipeline. Cell Reports, 2018, 23, 3673-3684.	6.4	108
15	Identification of a motor-to-auditory pathway important for vocal learning. Nature Neuroscience, 2017, 20, 978-986.	14.8	93
16	A Distributed Recurrent Network Contributes to Temporally Precise Vocalizations. Neuron, 2016, 91, 680-693.	8.1	78
17	Maternal Loss of <i>Ube3a</i> Impairs Experience-Driven Dendritic Spine Maintenance in the Developing Visual Cortex. Journal of Neuroscience, 2016, 36, 4888-4894.	3.6	55
18	The Basal Forebrain and Motor Cortex Provide Convergent yet Distinct Movement-Related Inputs to the Auditory Cortex. Neuron, 2016, 90, 635-648.	8.1	159

RICHARD D MOONEY

#	Article	IF	CITATIONS
19	Focal expression of mutant huntingtin in the songbird basal ganglia disrupts cortico-basal ganglia networks and vocal sequences. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1720-7.	7.1	31
20	Giant ankyrin-G stabilizes somatodendritic GABAergic synapses through opposing endocytosis of GABA _A receptors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1214-1219.	7.1	72
21	Motor-related signals in the auditory system for listening and learning. Current Opinion in Neurobiology, 2015, 33, 78-84.	4.2	39
22	Imaging Auditory Representations of Song and Syllables in Populations of Sensorimotor Neurons Essential to Vocal Communication. Journal of Neuroscience, 2015, 35, 5589-5605.	3.6	22
23	A synaptic and circuit basis for corollary discharge in the auditory cortex. Nature, 2014, 513, 189-194.	27.8	487
24	Auditory–vocal mirroring in songbirds. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130179.	4.0	49
25	Auditory synapses to song premotor neurons are gated off during vocalization in zebra finches. ELife, 2014, 3, e01833.	6.0	74
26	A Circuit for Motor Cortical Modulation of Auditory Cortical Activity. Journal of Neuroscience, 2013, 33, 14342-14353.	3.6	174
27	Motor circuits help encode auditory memories of vocal models used to guide vocal learning. Hearing Research, 2013, 303, 48-57.	2.0	21
28	Diminished FoxP2 Levels Affect Dopaminergic Modulation of Corticostriatal Signaling Important to Song Variability. Neuron, 2013, 80, 1464-1476.	8.1	112
29	New Modules Are Added to Vibrissal Premotor Circuitry with the Emergence of Exploratory Whisking. Neuron, 2013, 77, 346-360.	8.1	117
30	Intracellular Neural Recording with Pure Carbon Nanotube Probes. PLoS ONE, 2013, 8, e65715.	2.5	48
31	Recurrent Interactions between the Input and Output of a Songbird Cortico-Basal Ganglia Pathway Are Implicated in Vocal Sequence Variability. Journal of Neuroscience, 2012, 32, 11671-11687.	3.6	65
32	Deafening Drives Cell-Type-Specific Changes to Dendritic Spines in a Sensorimotor Nucleus Important to Learned Vocalizations. Neuron, 2012, 73, 1028-1039.	8.1	49
33	Motor circuits are required to encode a sensory model for imitative learning. Nature Neuroscience, 2012, 15, 1454-1459.	14.8	140
34	The role of auditory feedback in vocal learning and maintenance. Current Opinion in Neurobiology, 2012, 22, 320-327.	4.2	39
35	Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning. Nature, 2010, 463, 948-952.	27.8	264
36	Persistent Representation of Juvenile Experience in the Adult Songbird Brain. Journal of Neuroscience, 2010, 30, 10586-10598.	3.6	45

RICHARD D MOONEY

#	Article	IF	CITATIONS
37	Manipulation of a Central Auditory Representation Shapes Learned Vocal Output. Neuron, 2010, 65, 122-134.	8.1	27
38	Song Decrystallization in Adult Zebra Finches Does Not Require the Song Nucleus NIf. Journal of Neurophysiology, 2009, 102, 979-991.	1.8	21
39	Neural mechanisms for learned birdsong. Learning and Memory, 2009, 16, 655-669.	1.3	163
40	Neurobiology of song learning. Current Opinion in Neurobiology, 2009, 19, 654-660.	4.2	104
41	Neural correlates of categorical perception in learned vocal communication. Nature Neuroscience, 2009, 12, 221-228.	14.8	128
42	Noradrenergic Induction of Odor-Specific Neural Habituation and Olfactory Memories. Journal of Neuroscience, 2008, 28, 10711-10719.	3.6	74
43	Telencephalic Neurons Monosynaptically Link Brainstem and Forebrain Premotor Networks Necessary for Song. Journal of Neuroscience, 2008, 28, 3479-3489.	3.6	65
44	A Synaptic Basis for Auditory–Vocal Integration in the Songbird. Journal of Neuroscience, 2008, 28, 1509-1522.	3.6	131
45	Thalamic Gating of Auditory Responses in Telencephalic Song Control Nuclei. Journal of Neuroscience, 2007, 27, 10024-10036.	3.6	64
46	Auditory Plasticity in a Basal Ganglia-Forebrain Pathway during Decrystallization of Adult Birdsong. Journal of Neuroscience, 2007, 27, 6374-6387.	3.6	38
47	Homogeneity of intrinsic properties of sexually dimorphic vocal motoneurons in male and female zebra finches. Journal of Comparative Neurology, 2007, 502, 157-169.	1.6	9
48	Synaptic Interactions Underlying Song-Selectivity in the Avian Nucleus HVC Revealed by Dual Intracellular Recordings. Journal of Neurophysiology, 2006, 95, 1158-1175.	1.8	37
49	Sensory systems. Current Opinion in Neurobiology, 2006, 16, 359-362.	4.2	2
50	Synaptic Integration of Olfactory Information in Mouse Anterior Olfactory Nucleus. Journal of Neuroscience, 2006, 26, 12023-12032.	3.6	78
51	Acute injections of brain-derived neurotrophic factor in a vocal premotor nucleus reversibly disrupt adult birdsong stability and trigger syllable deletion. Journal of Neurobiology, 2005, 62, 406-424.	3.6	36
52	Calciumâ€binding proteins define interneurons in HVC of the zebra finch (<i>Taeniopygia guttata</i>). Journal of Comparative Neurology, 2005, 483, 76-90.	1.6	95
53	The HVC Microcircuit: The Synaptic Basis for Interactions between Song Motor and Vocal Plasticity Pathways. Journal of Neuroscience, 2005, 25, 1952-1964.	3.6	151
54	Sequential Learning From Multiple Tutors and Serial Retuning of Auditory Neurons in a Brain Area Important to Birdsong Learning. Journal of Neurophysiology, 2004, 92, 2771-2788.	1.8	33

RICHARD D MOONEY

#	Article	IF	CITATIONS
55	Neural correlates of learned song in the avian forebrain: simultaneous representation of self and others. Current Opinion in Neurobiology, 2004, 14, 496-502.	4.2	28
56	Synaptic Mechanisms for Auditory-Vocal Integration and the Correction of Vocal Errors. Annals of the New York Academy of Sciences, 2004, 1016, 476-494.	3.8	17
57	Inhibitory and Excitatory Mechanisms Underlying Auditory Responses to Learned Vocalizations in the Songbird Nucleus HVC. Neuron, 2003, 39, 177-194.	8.1	58
58	Respiratory and Telencephalic Modulation of Vocal Motor Neurons in the Zebra Finch. Journal of Neuroscience, 2003, 23, 1072-1086.	3.6	69
59	A bird's eye view: top down intracellular analyses of auditory selectivity for learned vocalizations. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2002, 188, 879-895.	1.6	25
60	Androgens and Isolation From Adult Tutors Differentially Affect the Development of Songbird Neurons Critical to Vocal Plasticity. Journal of Neurophysiology, 2001, 85, 34-42.	1.8	23
61	Auditory representation of the vocal repertoire in a songbird with multiple song types. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12778-12783.	7.1	53
62	Slow NMDA-EPSCs at synapses critical for song development are not required for song learning in zebra finches. Nature Neuroscience, 2000, 3, 482-488.	14.8	81
63	Bird communication: Two voices are better than one. Current Biology, 2000, 10, R634-R636.	3.9	7
64	Different Subthreshold Mechanisms Underlie Song Selectivity in Identified HVc Neurons of the Zebra Finch. Journal of Neuroscience, 2000, 20, 5420-5436.	3.6	196
65	Intrinsic and Extrinsic Contributions to Auditory Selectivity in a Song Nucleus Critical for Vocal Plasticity. Journal of Neuroscience, 2000, 20, 5437-5448.	3.6	47
66	Androgens Modulate NMDA Receptor–Mediated EPSCs in the Zebra Finch Song System. Journal of Neurophysiology, 1999, 82, 2221-2234.	1.8	98
67	Long-Range Inhibition Within the Zebra Finch Song Nucleus RA Can Coordinate the Firing of Multiple Projection Neurons. Journal of Neurophysiology, 1999, 81, 3007-3020.	1.8	145
68	Lesions of an Avian Forebrain Nucleus That Disrupt Song Development Alter Synaptic Connectivity and Transmission in the Vocal Premotor Pathway. Journal of Neuroscience, 1999, 19, 9385-9398.	3.6	73
69	Sensitive periods and circuits for learned birdsong. Current Opinion in Neurobiology, 1999, 9, 121-127.	4.2	45
70	Birdsong: Can an old bird change his tune?. Current Biology, 1999, 9, R688-R690.	3.9	6
71	Development of Intrinsic and Synaptic Properties in a Forebrain Nucleus Essential to Avian Song Learning. Journal of Neuroscience, 1997, 17, 8997-9009.	3.6	105
72	Thalamic Relay of Spontaneous Retinal Activity Prior to Vision. Neuron, 1996, 17, 863-874.	8.1	204

#	Article	IF	CITATIONS
73	Behavioural Learning: The illuminated songbird. Current Biology, 1995, 5, 609-611.	3.9	2
74	Enhancement of transmission at the developing retinogeniculate synapse. Neuron, 1993, 10, 815-825.	8.1	101