Kent C Condie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3979179/publications.pdf

Version: 2024-02-01

75 papers 11,407 citations

50276 46 h-index 70 g-index

78 all docs 78 docs citations

times ranked

78

5396 citing authors

#	Article	IF	CITATIONS
1	Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 1993, 104, 1-37.	3.3	1,896
2	Thermal history of the Earth and its petrological expression. Earth and Planetary Science Letters, 2010, 292, 79-88.	4.4	836
3	Episodic continental growth and supercontinents: a mantle avalanche connection?. Earth and Planetary Science Letters, 1998, 163, 97-108.	4.4	718
4	Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochimica Et Cosmochimica Acta, 1987, 51, 2401-2416.	3.9	584
5	Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra. Gondwana Research, 2009, 15, 228-242.	6.0	579
6	High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?. Lithos, 2005, 79, 491-504.	1.4	531
7	Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth. Precambrian Research, 2010, 180, 227-236.	2.7	398
8	Episodic continental growth models: afterthoughts and extensions. Tectonophysics, 2000, 322, 153-162.	2.2	385
9	Another look at rare earth elements in shales. Geochimica Et Cosmochimica Acta, 1991, 55, 2527-2531.	3.9	326
10	Geochemical changes in baslts and andesites across the Archean-Proterozoic boundary: Identification and significance. Lithos, 1989, 23, 1-18.	1.4	289
11	The building blocks of continental crust: Evidence for a major change in the tectonic setting of continental growth at the end of the Archean. Gondwana Research, 2013, 23, 394-402.	6.0	278
12	Evidence and implications for a widespread magmatic shutdown for 250ÂMy on Earth. Earth and Planetary Science Letters, 2009, 282, 294-298.	4.4	252
13	The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution. Earth and Planetary Science Letters, 1990, 97, 256-267.	4.4	249
14	Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates?. Precambrian Research, 2001, 106, 239-260.	2.7	226
15	Supercontinents and superplume events: distinguishing signals in the geologic record. Physics of the Earth and Planetary Interiors, 2004, 146, 319-332.	1.9	208
16	Incompatible element ratios in oceanic basalts and komatiites: Tracking deep mantle sources and continental growth rates with time. Geochemistry, Geophysics, Geosystems, 2003, 4, 1-28.	2.5	199
17	Breakup of a Paleoproterozoic Supercontinent. Gondwana Research, 2002, 5, 41-43.	6.0	197
18	U–Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust. Precambrian Research, 2005, 139, 42-100.	2.7	187

#	Article	IF	CITATIONS
19	Geochemistry and Tectonic Setting of Early Proterozoic Supracrustal Rocks in the Southwestern United States. Journal of Geology, 1986, 94, 845-864.	1.4	174
20	A planet in transition: The onset of plate tectonics on Earth between 3Âand 2ÂGa?. Geoscience Frontiers, 2018, 9, 51-60.	8.4	150
21	A great thermal divergence in the mantle beginning 2.5ÂGa: Geochemical constraints from greenstone basalts and komatiites. Geoscience Frontiers, 2016, 7, 543-553.	8.4	137
22	Proterozoic geologic evolution of the SW part of the Amazonian Craton in Mato Grosso state, Brazil. Precambrian Research, 2001, 111, 91-128.	2.7	136
23	Sources of Proterozoic mafic dyke swarms: constraints from ThTa and LaYb ratios. Precambrian Research, 1997, 81, 3-14.	2.7	124
24	Mafic crustal xenoliths and the origin of the lower continental crust. Lithos, 1999, 46, 95-101.	1.4	120
25	Geochemical and detrital mode evidence for two sources of Early Proterozoic sedimentary rocks from the Tonto Basin Supergroup, central Arizona. Sedimentary Geology, 1992, 77, 51-76.	2.1	119
26	Chapter 10 Archean and Early Proterozoic Evolution of the Siberian Craton: A Preliminary Assessment. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 1994, 11, 411-459.	0.2	108
27	Accretionary orogens in space and time. Memoir of the Geological Society of America, 2007, , 145-158.	0.5	91
28	Controls on the heterogeneous distribution of mineral deposits through time. Geological Society Special Publication, 2005, 248, 71-101.	1.3	90
29	Tectonic setting and provenance of the Neoproterozoic Uinta Mountain and Big Cottonwood groups, northern Utah: constraints from geochemistry, Nd isotopes, and detrital modes. Sedimentary Geology, 2001, 141-142, 443-464.	2.1	88
30	Preservation and Recycling of Crust during Accretionary and Collisional Phases of Proterozoic Orogens: A Bumpy Road from Nuna to Rodinia. Geosciences (Switzerland), 2013, 3, 240-261.	2.2	87
31	Changing tectonic settings through time: Indiscriminate use of geochemical discriminant diagrams. Precambrian Research, 2015, 266, 587-591.	2.7	80
32	Trace Elements as Source Indicators in Cratonic Sediments: A Case Study from the Early Proterozoic Libby Creek Group, Southeastern Wyoming. Journal of Geology, 1993, 101, 319-332.	1.4	78
33	Is the rate of supercontinent assembly changing with time?. Precambrian Research, 2015, 259, 278-289.	2.7	76
34	Chapter 3 Greenstones Through Time. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 1994, , 85-120.	0.2	75
35	Refinement of the supercontinent cycle with Hf, Nd and Sr isotopes. Geoscience Frontiers, 2013, 4, 667-680.	8.4	75
36	The supercontinent cycle: are there two patterns of cyclicity?. Journal of African Earth Sciences, 2002, 35, 179-183.	2.0	71

#	Article	IF	CITATIONS
37	Episodic ages of Greenstones: A key to mantle dynamics?. Geophysical Research Letters, 1995, 22, 2215-2218.	4.0	67
38	Upstairs-downstairs: supercontinents and large igneous provinces, are they related? International Geology Review, 2015, 57, 1341-1348.	2.1	64
39	Zircon age peaks: Production or preservation of continental crust?. , 2017, 13, 227-234.		63
40	Time series analysis of mantle cycles Part I: Periodicities and correlations among seven global isotopic databases. Geoscience Frontiers, 2019, 10, 1305-1326.	8.4	63
41	Geochemistry and petrogenesis of early Proterozoic amphibolites, west-central Colorado, U.S.A Chemical Geology, 1988, 67, 209-225.	3.3	61
42	Supercontinents, superplumes and continental growth: the Neoproterozoic record. Geological Society Special Publication, 2003, 206, 1-21.	1.3	56
43	The Crust of the Colorado Plateau: New Views of an Old Arc. Journal of Geology, 1999, 107, 387-397.	1.4	53
44	Continental accretion: contrasting Mesozoic and Early Proterozoic tectonic regimes in North America. Tectonophysics, 1996, 265, 101-126.	2.2	52
45	Xenolithic evidence for Proterozoic crustal evolution beneath the Colorado Plateau. Bulletin of the Geological Society of America, 1999, 111, 590-606.	3.3	52
46	Continental growth during a 1.9-Ga superplume event. Journal of Geodynamics, 2002, 34, 249-264.	1.6	51
47	Geologic evidence for a mantle superplume event at $1.9\mathrm{Ga}$. Geochemistry, Geophysics, Geosystems, $2000,1,\mathrm{n/a-n/a}$.	2.5	49
48	Zircon Age Episodicity and Growth of Continental Crust. Eos, 2009, 90, 364-364.	0.1	38
49	LIPs, orogens and supercontinents: The ongoing saga. Gondwana Research, 2021, 96, 105-121.	6.0	36
50	Origin of Late Archean and Early Proterozoic rocks and associated mineral deposits from the Zhongtiao Mountains, east-central China. Precambrian Research, 1990, 47, 287-306.	2.7	35
51	Quantifying the evolution of the continental and oceanic crust. Earth-Science Reviews, 2017, 164, 63-83.	9.1	34
52	A geochronological review of magmatism along the external margin of Columbia and in the Grenville-age orogens forming the core of Rodinia. Precambrian Research, 2022, 371, 106463.	2.7	34
53	Episodic crustal production before 2.7†Ga. Precambrian Research, 2018, 312, 16-22.	2.7	33
54	Distribution of high field strength and rare earth elements in mantle and lower crustal xenoliths from the Southwestern United States: The role of grain-boundary phases. Geochimica Et Cosmochimica Acta, 2004, 68, 3919-3942.	3.9	32

#	Article	IF	CITATIONS
55	The 1.75-Ga Iron King Volcanics in west-central Arizona: a remnant of an accreted oceanic plateau derived from a mantle plume with a deep depleted component. Lithos, 2002, 64, 49-62.	1.4	31
56	Geochemistry, Nd and Sr isotopes, and U/Pb Zircon ages of Granitoid and Metasedimentary Xenoliths from the Navajo Volcanic Field, Four Corners area, Southwestern United States. Chemical Geology, 1999, 156, 95-133.	3.3	30
57	Tracking the evolution of mantle sources with incompatible element ratios in stagnant-lid and plate-tectonic planets. Geochimica Et Cosmochimica Acta, 2017, 213, 47-62.	3.9	30
58	Origin of the continental crust in the Colorado Plateau: Geochemical evidence from mafic xenoliths from the Navajo Volcanic Field, southwestern USA. Geochimica Et Cosmochimica Acta, 1997, 61, 2007-2021.	3.9	26
59	Time series analysis of mantle cycles Part II: The geologic record in zircons, large igneous provinces and mantle lithosphere. Geoscience Frontiers, 2019, 10, 1327-1336.	8.4	26
60	Rapid mantle convection drove massive crustal thickening in the late Archean. Geochimica Et Cosmochimica Acta, 2020, 278, 6-15.	3.9	22
61	Archean geodynamics: Similar to or different from modern geodynamics?. Geophysical Monograph Series, 2006, , 47-59.	0.1	20
62	A template for an improved rock-based subdivision of the pre-Cryogenian timescale. Journal of the Geological Society, 2022, 179 , .	2.1	18
63	Revisiting the Mesoproterozoic. Gondwana Research, 2021, 100, 44-52.	6.0	17
64	Two Major Transitions in Earth History: Evidence of Two Lithospheric Strength Thresholds. Journal of Geology, 2021, 129, 455-473.	1.4	17
65	A reappraisal of the global tectono-magmatic lull atÂâ^1/4Â2.3ÂGa. Precambrian Research, 2022, 376, 106690.	2.7	17
66	Applying Popperian falsifiability to geodynamic hypotheses: empirical testing of the episodic crustal/zircon production hypothesis and selective preservation hypothesis. International Geology Review, 2021, 63, 1920-1950.	2.1	15
67	Earth's Oldest Rocks and Minerals. , 2019, , 239-253.		12
68	A review of methods used to test periodicity of natural processes with a special focus on harmonic periodicities found in global U Pb detrital zircon age distributions. Earth-Science Reviews, 2022, 224, 103885.	9.1	11
69	Global Change Related to Rodinia and Gondwana. Gondwana Research, 2001, 4, 598-599.	6.0	10
70	Crustal and Mantle Evolution. , 2016, , 147-199.		4
71	The Supercontinent Cycle. , 2016, , 201-235.		2
72	Significance of high field strength and rare earth element distributions in deciphering the evolution of the inner solar system. Geochimica Et Cosmochimica Acta, 2019, 266, 633-651.	3.9	2

#	Article	IF	CITATIONS
73	Earth cycles. , 2022, , 197-227.		1
74	Secular compositional changes in hydrated mantle: The record of arc-type basalts. Chemical Geology, 2022, 607, 121010.	3.3	1
75	Crustal and mantle evolution. , 2022, , 139-195.		0