
LuÃ-s Pereira de Almeida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/397887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /0	Overlock 10	0 Tf 50 742
2	Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases. Journal of Controlled Release, 2017, 262, 247-258.	9.9	298
3	miRâ€155 modulates microgliaâ€mediated immune response by downâ€regulating SOCSâ€1 and promoting cytokine and nitric oxide production. Immunology, 2012, 135, 73-88.	4.4	283
4	Self-Inactivating Lentiviral Vectors with Enhanced Transgene Expression as Potential Gene Transfer System in Parkinson's Disease. Human Gene Therapy, 2000, 11, 179-190.	2.7	276
5	Lentiviral-Mediated Delivery of Mutant Huntingtin in the Striatum of Rats Induces a Selective Neuropathology Modulated by Polyglutamine Repeat Size, Huntingtin Expression Levels, and Protein Length. Journal of Neuroscience, 2002, 22, 3473-3483.	3.6	184
6	Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado–Joseph disease. Brain, 2011, 134, 1400-1415.	7.6	171
7	MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: A new multimodal gene therapy approach for glioblastoma. Journal of Controlled Release, 2015, 207, 31-39.	9.9	167
8	Neuroprotective Effect of a CNTF-Expressing Lentiviral Vector in the Quinolinic Acid Rat Model of Huntington's Disease. Neurobiology of Disease, 2001, 8, 433-446.	4.4	150
9	Gene therapy for the CNS using AAVs: The impact of systemic delivery by AAV9. Journal of Controlled Release, 2016, 241, 94-109.	9.9	148
10	Allele-Specific RNA Silencing of Mutant Ataxin-3 Mediates Neuroprotection in a Rat Model of Machado-Joseph Disease. PLoS ONE, 2008, 3, e3341.	2.5	141
11	Early miR-155 upregulation contributes to neuroinflammation in Alzheimer's disease triple transgenic mouse model. Human Molecular Genetics, 2014, 23, 6286-6301.	2.9	133
12	Dose-Dependent Neuroprotective Effect of Ciliary Neurotrophic Factor Delivered via Tetracycline-Regulated Lentiviral Vectors in the Quinolinic Acid Rat Model of Huntington's Disease. Human Gene Therapy, 2002, 13, 1981-1990.	2.7	109
13	Silencing Mutant Ataxin-3 Rescues Motor Deficits and Neuropathology in Machado-Joseph Disease Transgenic Mice. PLoS ONE, 2013, 8, e52396.	2.5	104
14	Calpastatin-mediated inhibition of calpains in the mouse brain prevents mutant ataxin 3 proteolysis, nuclear localization and aggregation, relieving Machado-Joseph disease. Brain, 2012, 135, 2428-2439.	7.6	98
15	Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiology of Disease, 2016, 95, 210-224.	4.4	98
16	Silencing ataxin-3 mitigates degeneration in a rat model of Machado–Joseph disease: no role for wild-type ataxin-3?. Human Molecular Genetics, 2010, 19, 2380-2394.	2.9	96
17	Machado–Joseph disease/spinocerebellar ataxia type 3: lessons from disease pathogenesis and clues into therapy. Journal of Neurochemistry, 2019, 148, 8-28.	3.9	92
18	siRNA delivery by a transferrin-associated lipid-based vector: a non-viral strategy to mediate gene silencing. Journal of Gene Medicine, 2007, 9, 170-183.	2.8	89

#	Article	IF	CITATIONS
19	Role of hypothalamic neurogenesis in feeding regulation. Trends in Endocrinology and Metabolism, 2014, 25, 80-88.	7.1	88
20	Beclin 1 mitigates motor and neuropathological deficits in genetic mouse models of Machado–Joseph disease. Brain, 2013, 136, 2173-2188.	7.6	86
21	Caloric restriction blocks neuropathology and motor deficits in Machado–Joseph disease mouse models through SIRT1 pathway. Nature Communications, 2016, 7, 11445.	12.8	86
22	Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype. Biomaterials, 2016, 82, 124-137.	11.4	86
23	Tumor-targeted Chlorotoxin-coupled Nanoparticles for Nucleic Acid Delivery to Glioblastoma Cells: A Promising System for Glioblastoma Treatment. Molecular Therapy - Nucleic Acids, 2013, 2, e100.	5.1	83
24	MicroRNA-21 silencing enhances the cytotoxic effect of the antiangiogenic drug sunitinib in glioblastoma. Human Molecular Genetics, 2013, 22, 904-918.	2.9	79
25	Striatal and nigral pathology in a lentiviral rat model of Machado-Joseph disease. Human Molecular Genetics, 2008, 17, 2071-2083.	2.9	78
26	Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain, 2015, 138, 320-335.	7.6	78
27	Caffeine and adenosine A _{2A} receptor inactivation decrease striatal neuropathology in a lentiviralâ€based model of Machado–Joseph disease. Annals of Neurology, 2013, 73, 655-666.	5.3	77
28	Tf-lipoplexes for neuronal siRNA delivery: A promising system to mediate gene silencing in the CNS. Journal of Controlled Release, 2008, 132, 113-123.	9.9	75
29	Adenosine A2A Receptors in the Amygdala Control Synaptic Plasticity and Contextual Fear Memory. Neuropsychopharmacology, 2016, 41, 2862-2871.	5.4	75
30	Stress granules, RNA-binding proteins and polyglutamine diseases: too much aggregation?. Cell Death and Disease, 2021, 12, 592.	6.3	74
31	Neurofilaments in spinocerebellar ataxia type 3: blood biomarkers at the preataxic and ataxic stage in humans and mice. EMBO Molecular Medicine, 2020, 12, e11803.	6.9	73
32	Fibroblasts of Machado Joseph Disease patients reveal autophagy impairment. Scientific Reports, 2016, 6, 28220.	3.3	68
33	Neural Stem Cells of Parkinson's Disease Patients Exhibit Aberrant Mitochondrial Morphology and Functionality. Stem Cell Reports, 2019, 12, 878-889.	4.8	68
34	Let-7 Coordinately Suppresses Components of the Amino Acid Sensing Pathway to Repress mTORC1 and Induce Autophagy. Cell Metabolism, 2014, 20, 626-638.	16.2	67
35	Tf-lipoplex-mediated NGF gene transfer to the CNS: neuronal protection and recovery in an excitotoxic model of brain injury. Gene Therapy, 2005, 12, 1242-1252.	4.5	62
36	IGF-1 Intranasal Administration Rescues Huntington's Disease Phenotypes in YAC128 Mice. Molecular Neurobiology, 2014, 49, 1126-1142.	4.0	60

#	Article	IF	CITATIONS
37	Neuropeptide Y stimulates autophagy in hypothalamic neurons. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1642-E1651.	7.1	60
38	miRNA-31 Improves Cognition and Abolishes Amyloid-β Pathology by Targeting APP and BACE1 in an Animal Model of Alzheimer's Disease. Molecular Therapy - Nucleic Acids, 2020, 19, 1219-1236.	5.1	56
39	Long-term lentiviral-mediated expression of ciliary neurotrophic factor in the striatum of Huntington's disease transgenic mice. Experimental Neurology, 2004, 185, 26-35.	4.1	54
40	Restoring brain cholesterol turnover improves autophagy and has therapeutic potential in mouse models of spinocerebellar ataxia. Acta Neuropathologica, 2019, 138, 837-858.	7.7	53
41	Surfactants as Microbicides and Contraceptive Agents: A Systematic In Vitro Study. PLoS ONE, 2008, 3, e2913.	2.5	52
42	Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation. Aging, 2016, 8, 1470-1484.	3.1	50
43	Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of polyglutamine disorders. Brain, 2020, 143, 407-429.	7.6	49
44	Tf-lipoplex-mediated c-Jun silencing improves neuronal survival following excitotoxic damage in vivo. Journal of Controlled Release, 2010, 142, 392-403.	9.9	48
45	Comparative study of GDNF delivery systems for the CNS: polymer rods, encapsulated cells, and lentiviral vectors. Journal of Controlled Release, 2003, 87, 107-115.	9.9	47
46	Complete genotyping of mucosal human papillomavirus using a restriction fragment length polymorphism analysis and an original typing algorithm. Journal of Clinical Virology, 2008, 42, 13-21.	3.1	47
47	Unravelling Endogenous MicroRNA System Dysfunction as a New Pathophysiological Mechanism in Machado-Joseph Disease. Molecular Therapy, 2017, 25, 1038-1055.	8.2	47
48	Calpain inhibition reduces ataxin-3 cleavage alleviating neuropathology and motor impairments in mouse models of Machado–Joseph disease. Human Molecular Genetics, 2014, 23, 4932-4944.	2.9	46
49	Neuroprotective effect of interleukin-6 and IL6/IL6R chimera in the quinolinic acid rat model of Huntington's syndrome. European Journal of Neuroscience, 2001, 14, 1753-1761.	2.6	44
50	Moderate Long-Term Modulation of Neuropeptide Y in Hypothalamic Arcuate Nucleus Induces Energy Balance Alterations in Adult Rats. PLoS ONE, 2011, 6, e22333.	2.5	44
51	Neuropeptide Y mitigates neuropathology and motor deficits in mouse models of Machado–Joseph disease. Human Molecular Genetics, 2015, 24, 5451-5463.	2.9	43
52	Cleavage of the Vesicular GABA Transporter under Excitotoxic Conditions Is Followed by Accumulation of the Truncated Transporter in Nonsynaptic Sites. Journal of Neuroscience, 2011, 31, 4622-4635.	3.6	42
53	Gephyrin Cleavage in In Vitro Brain Ischemia Decreases GABAA Receptor Clustering and Contributes to Neuronal Death. Molecular Neurobiology, 2016, 53, 3513-3527.	4.0	41
54	Cordycepin activates autophagy through AMPK phosphorylation to reduce abnormalities in Machado–Joseph disease models. Human Molecular Genetics, 2019, 28, 51-63.	2.9	39

LuÃs Pereira de Almeida

#	Article	IF	CITATIONS
55	Modeling Dissolution of Sparingly Soluble Multisized Powders. Journal of Pharmaceutical Sciences, 1997, 86, 726-732.	3.3	38
56	Ataxin-3 phosphorylation decreases neuronal defects in spinocerebellar ataxia type 3 models. Journal of Cell Biology, 2016, 212, 465-480.	5.2	35
57	RNA Interference Mitigates Motor and Neuropathological Deficits in a Cerebellar Mouse Model of Machado-Joseph Disease. PLoS ONE, 2014, 9, e100086.	2.5	33
58	Re-establishing ataxin-2 downregulates translation of mutant ataxin-3 and alleviates Machado–Joseph disease. Brain, 2015, 138, 3537-3554.	7.6	32
59	Successes and Hurdles in Stem Cells Application and Production for Brain Transplantation. Frontiers in Neuroscience, 2019, 13, 1194.	2.8	32
60	Proliferative Hypothalamic Neurospheres Express NPY, AGRP, POMC, CART and Orexin-A and Differentiate to Functional Neurons. PLoS ONE, 2011, 6, e19745.	2.5	31
61	Proteolytic Cleavage of Polyglutamine Disease-Causing Proteins: Revisiting the Toxic Fragment Hypothesis. Current Pharmaceutical Design, 2017, 23, 753-775.	1.9	28
62	Stroma-derived IL-6, G-CSF and Activin-A mediated dedifferentiation of lung carcinoma cells into cancer stem cells. Scientific Reports, 2018, 8, 11573.	3.3	26
63	Tau and neurofilament lightâ€chain as fluid biomarkers in spinocerebellar ataxia type 3. European Journal of Neurology, 2022, 29, 2439-2452.	3.3	25
64	PDGF-B-mediated downregulation of miR-21: new insights into PDGF signaling in glioblastoma. Human Molecular Genetics, 2012, 21, 5118-5130.	2.9	24
65	Overexpression of Mutant Ataxin-3 in Mouse Cerebellum Induces Ataxia and Cerebellar Neuropathology. Cerebellum, 2013, 12, 441-455.	2.5	24
66	Repeated Mesenchymal Stromal Cell Treatment Sustainably Alleviates Machado-Joseph Disease. Molecular Therapy, 2018, 26, 2131-2151.	8.2	24
67	Mitochondrial and Redox Modifications in Huntington Disease Induced Pluripotent Stem Cells Rescued by CRISPR/Cas9 CAGs Targeting. Frontiers in Cell and Developmental Biology, 2020, 8, 576592.	3.7	24
68	Simple and Fast SEC-Based Protocol to Isolate Human Plasma-Derived Extracellular Vesicles for Transcriptional Research. Molecular Therapy - Methods and Clinical Development, 2020, 18, 723-737.	4.1	24
69	Unraveling the Role of Ataxin-2 in Metabolism. Trends in Endocrinology and Metabolism, 2017, 28, 309-318.	7.1	23
70	Control of Huntington's Disease-Associated Phenotypes by the Striatum-Enriched Transcription Factor Foxp2. Cell Reports, 2017, 21, 2688-2695.	6.4	22
71	Polyglutamineâ€Expanded Ataxinâ€3: A Target Engagement Marker for Spinocerebellar Ataxia Type 3 in Peripheral Blood. Movement Disorders, 2021, 36, 2675-2681.	3.9	22
72	Motor Dysfunctions and Neuropathology in Mouse Models of Spinocerebellar Ataxia Type 2: A Comprehensive Review. Frontiers in Neuroscience, 2016, 10, 572.	2.8	21

LuÃs Pereira de Almeida

#	Article	IF	CITATIONS
73	Dipeptidyl peptidase IV (DPP-IV) inhibition prevents fibrosis in adipose tissue of obese mice. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 403-413.	2.4	21
74	Loss of hierarchical imprinting regulation at the Prader–Willi/Angelman syndrome locus in human iPSCs. Human Molecular Genetics, 2018, 27, 3999-4011.	2.9	21
75	lbuprofen enhances synaptic function and neural progenitors proliferation markers and improves neuropathology and motor coordination in Machado–Joseph disease models. Human Molecular Genetics, 2019, 28, 3691-3703.	2.9	21
76	Trehalose alleviates the phenotype of Machado–Joseph disease mouse models. Journal of Translational Medicine, 2020, 18, 161.	4.4	21
77	Gene Therapy for Parkinsons and Alzheimers Diseases: from the Bench to Clinical Trials. Current Pharmaceutical Design, 2011, 17, 3434-3445.	1.9	20
78	The Parkinson's-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1. Cell Reports, 2021, 37, 109864.	6.4	20
79	Molecular Targets and Therapeutic Strategies in Huntingtons Disease. CNS and Neurological Disorders, 2005, 4, 361-381.	4.3	19
80	Caffeine alleviates progressive motor deficits in a transgenic mouse model of spinocerebellar ataxia. Annals of Neurology, 2017, 81, 407-418.	5.3	19
81	Liposomal and Viral Vectors for Gene Therapy of the Central Nervous System. CNS and Neurological Disorders, 2005, 4, 453-465.	4.3	18
82	Molecular Mechanisms and Cellular Pathways Implicated in Machado-Joseph Disease Pathogenesis. Advances in Experimental Medicine and Biology, 2018, 1049, 349-367.	1.6	18
83	RNA Interference Therapy for Machado–Joseph Disease: Long-Term Safety Profile of Lentiviral Vectors Encoding Short Hairpin RNAs Targeting Mutant Ataxin-3. Human Gene Therapy, 2019, 30, 841-854.	2.7	18
84	Photodynamic disinfection of SARS-CoV-2 clinical samples using a methylene blue formulation. Photochemical and Photobiological Sciences, 2022, 21, 1101-1109.	2.9	18
85	Mesenchymal stromal cells to fight SARS-CoV-2: Taking advantage of a pleiotropic therapy. Cytokine and Growth Factor Reviews, 2021, 58, 114-133.	7.2	17
86	Gene Therapies for Polyglutamine Diseases. Advances in Experimental Medicine and Biology, 2018, 1049, 395-438.	1.6	16
87	The blood-brain barrier is disrupted in Machado-Joseph disease/spinocerebellar ataxia type 3: evidence from transgenic mice and human post-mortem samples. Acta Neuropathologica Communications, 2020, 8, 152.	5.2	15
88	The autophagyâ€enhancing drug carbamazepine improves neuropathology and motor impairment in mouse models of Machado–Joseph disease. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	15
89	Neuropeptide Y Enhances Progerin Clearance and Ameliorates the Senescent Phenotype of Human Hutchinson-Gilford Progeria Syndrome Cells. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1073-1078.	3.6	14
90	Autophagy in Spinocerebellar ataxia type 2, a dysregulated pathway, and a target for therapy. Cell Death and Disease, 2021, 12, 1117.	6.3	14

LuÃs Pereira de Almeida

#	Article	IF	CITATIONS
91	Using genetically modified extracellular vesicles as a non-invasive strategy to evaluate brain-specific cargo. Biomaterials, 2022, 281, 121366.	11.4	13
92	Stem Cell-Based Therapies for Polyglutamine Diseases. Advances in Experimental Medicine and Biology, 2018, 1049, 439-466.	1.6	12
93	Living Proof of Activity of Extracellular Vesicles in the Central Nervous System. International Journal of Molecular Sciences, 2021, 22, 7294.	4.1	12
94	Characterization of common and rare human papillomaviruses in Portuguese women by the polymerase chain reaction, restriction fragment length polymorphism and sequencing. Journal of Medical Virology, 2010, 82, 1024-1032.	5.0	11
95	Fluoxetine Induces Proliferation and Inhibits Differentiation of Hypothalamic Neuroprogenitor Cells In Vitro. PLoS ONE, 2014, 9, e88917.	2.5	11
96	Safety profile of the intravenous administration of brain-targeted stable nucleic acid lipid particles. Data in Brief, 2016, 6, 700-705.	1.0	11
97	Generation of human iPSC line from a patient with laterality defects and associated congenital heart anomalies carrying a DAND5 missense alteration. Stem Cell Research, 2017, 25, 152-156.	0.7	11
98	Neuropeptide Y (NPY) intranasal delivery alleviates Machado–Joseph disease. Scientific Reports, 2021, 11, 3345.	3.3	11
99	Differential Temporal Dynamics of Axial and Appendicular Ataxia in <scp>SCA3</scp> . Movement Disorders, 2022, 37, 1850-1860.	3.9	11
100	ULK overexpression mitigates motor deficits and neuropathology in mouse models of Machado-Joseph disease. Molecular Therapy, 2022, 30, 370-387.	8.2	10
101	Highly Specific Blood-Brain Barrier Transmigrating Single-Domain Antibodies Selected by an In Vivo Phage Display Screening. Pharmaceutics, 2021, 13, 1598.	4.5	10
102	Highly Porous Composite Scaffolds Endowed with Antibacterial Activity for Multifunctional Grafts in Bone Repair. Polymers, 2021, 13, 4378.	4.5	9
103	Exogenous loading of extracellular vesicles, virus-like particles, and lentiviral vectors with supercharged proteins. Communications Biology, 2022, 5, 485.	4.4	9
104	SIRT2 Deficiency Exacerbates Hepatic Steatosis via a Putative Role of the ER Stress Pathway. International Journal of Molecular Sciences, 2022, 23, 6790.	4.1	9
105	Characterization of Lifestyle in Spinocerebellar Ataxia Type 3 and Association with Disease Severity. Movement Disorders, 2022, 37, 405-410.	3.9	8
106	miRNA-Mediated Knockdown of ATXN3 Alleviates Molecular Disease Hallmarks in a Mouse Model for Spinocerebellar Ataxia Type 3. Nucleic Acid Therapeutics, 2022, 32, 194-205.	3.6	8
107	Testing the applicability of classical diffusional models to polydisperse systems. International Journal of Pharmaceutics, 1996, 139, 169-176.	5.2	7
108	Cerebellar morphometric and spectroscopic biomarkers for Machado-Joseph Disease. Acta Neuropathologica Communications, 2022, 10, 37.	5.2	6

#	Article	IF	CITATIONS
109	Identification of the calpainâ€generated toxic fragment of ataxinâ€3 protein provides new avenues for therapy of Machado–Joseph disease Spinocerebellar ataxia type 3. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	4
110	Mesenchymal Stromal Cells' Therapy for Polyglutamine Disorders: Where Do We Stand and Where Should We Go?. Frontiers in Cellular Neuroscience, 2020, 14, 584277.	3.7	3
111	Generation and characterization of a human iPS cell line from a patient-related control to study disease mechanisms associated with DAND5 p.R152H alteration. Stem Cell Research, 2018, 29, 202-206.	0.7	2
112	Extracellular Vesicles Physiological Role and the Particular Case of Disease-Spreading Mechanisms in Polyglutamine Diseases. International Journal of Molecular Sciences, 2021, 22, 12288.	4.1	2
113	Protocol for the Characterization of the Cytosine-Adenine-Guanine Tract and Flanking Polymorphisms in Machado-Joseph Disease. Journal of Molecular Diagnostics, 2020, 22, 782-793.	2.8	1
114	Beclin-1 and autophagy: potential for new therapeutics in neurodegeneration. Neurodegenerative Disease Management, 2011, 1, 349-351.	2.2	0
115	487. Non-Viral Silencing of Machado-Joseph Disease Through the Systemic Route. Molecular Therapy, 2015, 23, S193-S194.	8.2	0
116	Gene editing and central nervous system regeneration. , 2020, , 399-433.		0
117	Polyglutamine Expansion Diseases – the Case of Machado-Joseph Disease. , 2007, , 391-426.		0
118	NEUROPEPTIDE Y RESCUES AGING PHENOTYPE OF HUMAN HUTCHINSON-GILFORD PROGERIA SYNDROME FIBROBLASTS. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR11-1.	0.0	0
119	Non-invasive and allele-specific gene silencing therapy for Machado-Joseph disease. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR24-4.	0.0	Ο