Jiahua Duan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3978700/publications.pdf

Version: 2024-02-01

516710 434195 1,229 32 16 31 citations h-index g-index papers 32 32 32 1375 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Active and Passive Tuning of Ultranarrow Resonances in Polaritonic Nanoantennas. Advanced Materials, 2022, 34, e2104954.	21.0	13
2	Active Tuning of Highly Anisotropic Phonon Polaritons in Van der Waals Crystal Slabs by Gated Graphene. ACS Photonics, 2022, 9, 383-390.	6.6	37
3	Anisotropy and Modal Hybridization in Infrared Nanophotonics Using Low-Symmetry Materials. ACS Photonics, 2022, 9, 1078-1095.	6.6	18
4	Manipulating polaritons at the extreme scale in van der Waals materials. Nature Reviews Physics, 2022, 4, 578-594.	26.6	51
5	Extracting the Infrared Permittivity of SiO2 Substrates Locally by Near-Field Imaging of Phonon Polaritons in a van der Waals Crystal. Nanomaterials, 2021, 11, 120.	4.1	7
6	Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nature Communications, 2021, 12, 854.	12.8	154
7	Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition. Science Advances, 2021, 7, .	10.3	53
8	Planar refraction and lensing of highly confined polaritons in anisotropic media. Nature Communications, 2021, 12, 4325.	12.8	48
9	Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas. Science Advances, 2021, 7, eabj0127.	10.3	36
10	Van der Waals Semiconductors: Infrared Permittivity of the Biaxial van der Waals Semiconductor αâ€MoO ₃ from Near―and Farâ€Field Correlative Studies (Adv. Mater. 29/2020). Advanced Materials, 2020, 32, 2070220.	21.0	5
11	Chemical switching of low-loss phonon polaritons in $\hat{l}\pm$ -MoO3 by hydrogen intercalation. Nature Communications, 2020, 11, 2646.	12.8	54
12	Twisted Nano-Optics: Manipulating Light at the Nanoscale with Twisted Phonon Polaritonic Slabs. Nano Letters, 2020, 20, 5323-5329.	9.1	126
13	Infrared Permittivity of the Biaxial van der Waals Semiconductor αâ€MoO ₃ from Near―and Farâ€Field Correlative Studies. Advanced Materials, 2020, 32, e1908176.	21.0	99
14	Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nature Materials, 2020, 19, 964-968.	27.5	129
15	Near-field optics on flatland: from noble metals to van der Waals materials. Advances in Physics: X, 2019, 4, 1593051.	4.1	8
16	Anderson Localized Plasmon in Graphene with Random Tensileâ€Strain Distribution. Advanced Science, 2019, 6, 1801974.	11.2	4
17	Optically Unraveling the Edge Chiralityâ€Dependent Band Structure and Plasmon Damping in Graphene Edges. Advanced Materials, 2018, 30, e1800367.	21.0	16
18	Improving Luttinger-liquid plasmons in carbon nanotubes by chemical doping. Nanoscale, 2018, 10, 6288-6293.	5.6	6

#	Article	IF	CITATIONS
19	Nanoimaging of Electronic Heterogeneity in Bi ₂ Se ₃ and Sb ₂ Te ₃ Nanocrystals. Advanced Electronic Materials, 2018, 4, 1700377.	5.1	16
20	Tunable Low Loss 1D Surface Plasmons in InAs Nanowires. Advanced Materials, 2018, 30, e1802551.	21.0	18
21	Launching Phonon Polaritons by Natural Boron Nitride Wrinkles with Modifiable Dispersion by Dielectric Environments. Advanced Materials, 2017, 29, 1702494.	21.0	53
22	Nano-infrared imaging of localized plasmons in graphene nano-resonators. Chinese Physics B, 2017, 26, 117802.	1.4	9
23	Hydrothermal Self-assembly of Manganese Dioxide/Manganese Carbonate/Reduced Graphene Oxide Aerogel for Asymmetric Supercapacitors. Electrochimica Acta, 2015, 164, 154-162.	5.2	120
24	Spectroscopic Detection of Clenbuterol Applying Gold Nanoparticles Encapsulated with Melamine. Journal of Nanoscience and Nanotechnology, 2014, 14, 3373-3379.	0.9	0
25	Synthesis of Gold Nanoparticles with Graphene Oxide. Journal of Nanoscience and Nanotechnology, 2014, 14, 3412-3416.	0.9	3
26	Modulated photoluminescence of graphene quantum dots in the vicinity of an individual silver nano-octahedron. Physical Chemistry Chemical Physics, 2014, 16, 4504.	2.8	14
27	Synthesis of MnO2/graphene/carbon nanotube nanostructured ternary composite for supercapacitor electrodes with high rate capability. Materials Chemistry and Physics, 2014, 147, 141-146.	4.0	44
28	Photorefractive photonic crystals fabricated with PMMA and 5CB based materials using three-dimensional colloidal crystals. Journal of Materials Chemistry C, 2013, 1, 5072.	5.5	5
29	Graphene and Nanostructured Mn ₃ O ₄ Composites for Supercapacitors. Integrated Ferroelectrics, 2013, 144, 118-126.	0.7	21
30	Glassy carbon electrode modified with gold nanoparticles for ractopamine and metaproterenol sensing. Chemical Physics Letters, 2013, 574, 83-88.	2.6	29
31	Simple synthesis method of reduced graphene oxide/gold nanoparticle and its application in surface-enhanced Raman scattering. Chemical Physics Letters, 2013, 582, 119-122.	2.6	16
32	The fabrication of nanochain structure of gold nanoparticles and its application in ractopamine sensing. Talanta, 2013, 115, 992-998.	5.5	17