Jason Kindrachuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3978479/publications.pdf

Version: 2024-02-01

109321 91884 5,578 75 35 69 citations g-index h-index papers 80 80 80 9737 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Acute hepatitis of unknown origin in children. BMJ, The, 2022, 377, o1197.	6.0	22
2	Integrating Proteomics for Facilitating Drug Identification and Repurposing During an Emerging Virus Pandemic. ACS Infectious Diseases, 2021, 7, 1303-1316.	3.8	1
3	Allergen inhalation generates pro-inflammatory oxidised phosphatidylcholine associated with airway dysfunction. European Respiratory Journal, 2021, 57, 2000839.	6.7	13
4	Towards a coordinated strategy for intercepting human disease emergence in Africa. Lancet Microbe, The, 2021, 2, e51-e52.	7.3	1
5	Sex and age bias viral burden and interferon responses during SARS-CoV-2 infection in ferrets. Scientific Reports, 2021, 11, 14536.	3.3	14
6	SARS-CoV-2 infection in the Syrian hamster model causes inflammation as well as type I interferon dysregulation in both respiratory and non-respiratory tissues including the heart and kidney. PLoS Pathogens, 2021, 17, e1009705.	4.7	60
7	COVID-19 false dichotomies and a comprehensive review of the evidence regarding public health, COVID-19 symptomatology, SARS-CoV-2 transmission, mask wearing, and reinfection. BMC Infectious Diseases, 2021, 21, 710.	2.9	118
8	The future of zoonotic risk prediction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200358.	4.0	47
9	HIV-Captured DCs Regulate T Cell Migration and Cell-Cell Contact Dynamics to Enhance Viral Spread. IScience, 2020, 23, 101427.	4.1	12
10	Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ, The, 2020, 371, m3862.	6.0	515
11	Dysregulated Host Responses Underlie 2009 Pandemic Influenza-Methicillin Resistant Staphylococcus aureus Coinfection Pathogenesis at the Alveolar-Capillary Barrier. Cells, 2020, 9, 2472.	4.1	3
12	Nonhuman primates exposed to Zika virus in utero are not protected against reinfection at $1\ \text{year}$ postpartum. Science Translational Medicine, 2020, 12 , .	12.4	1
13	Zika virus dysregulates human Sertoli cell proteins involved in spermatogenesis with little effect on tight junctions. PLoS Neglected Tropical Diseases, 2020, 14, e0008335.	3.0	25
14	Longitudinal Human Antibody Repertoire against Complete Viral Proteome from Ebola Virus Survivor Reveals Protective Sites for Vaccine Design. Cell Host and Microbe, 2020, 27, 262-276.e4.	11.0	29
15	2019-nCoV (Wuhan virus), a novel Coronavirus: human-to-human transmission, travel-related cases, and vaccine readiness. Journal of Infection in Developing Countries, 2020, 14, 3-17.	1.2	162
16	Toll-like Interleukin 1 Receptor Regulator Is an Important Modulator of Inflammation Responsive Genes. Frontiers in Immunology, 2019, 10, 272.	4.8	18
17	Variola Virus: Clinical, Molecular, and Bioterrorism Perspectives. , 2019, , 55-102.		1
18	A year of terror and a century of reflection: perspectives on the great influenza pandemic of 1918–1919. BMC Infectious Diseases, 2019, 19, 117.	2.9	88

#	Article	IF	CITATIONS
19	Characterization of Host and Bacterial Contributions to Lung Barrier Dysfunction Following Co-infection with 2009 Pandemic Influenza and Methicillin Resistant Staphylococcus aureus. Viruses, 2019, 11, 116.	3.3	21
20	A Comparative Analysis of Factors Influencing Two Outbreaks of Middle Eastern Respiratory Syndrome (MERS) in Saudi Arabia and South Korea. Viruses, 2019, 11, 1119.	3.3	38
21	Selective inhibition of host cell signaling for rotavirus antivirals: PI3K/Akt/mTOR-mediated rotavirus pathogenesis. Virulence, 2018, 9, 5-8.	4.4	4
22	1543: A MODEL OF LONG-TERM INTENSIVE SUPPORTIVE CARE IN NONHUMAN PRIMATES. Critical Care Medicine, 2018, 46, 755-755.	0.9	0
23	Persistence and Sexual Transmission of Filoviruses. Viruses, 2018, 10, 683.	3.3	62
24	Longitudinal peripheral blood transcriptional analysis of a patient with severe Ebola virus disease. Science Translational Medicine, 2017, 9, .	12.4	23
25	Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome: Current Therapeutic Options and Potential Targets for Novel Therapies. Drugs, 2017, 77, 1935-1966.	10.9	156
26	Evidence of Ebola Virus Replication and High Concentration in Semen of a Patient During Recovery. Clinical Infectious Diseases, 2017, 65, 1400-1403.	5.8	26
27	1918 Influenza receptor binding domain variants bind and replicate in primary human airway cells regardless of receptor specificity. Virology, 2016, 493, 238-246.	2.4	10
28	Influenza A and methicillin-resistant Staphylococcus aureus co-infection in rhesus macaques $\hat{a} \in A$ model of severe pneumonia. Antiviral Research, 2016, 129, 120-129.	4.1	18
29	Integration of Global Analyses of Host Molecular Responses with Clinical Data To Evaluate Pathogenesis and Advance Therapies for Emerging and Re-emerging Viral Infections. ACS Infectious Diseases, 2016, 2, 787-799.	3.8	19
30	1918 pandemic influenza virus and <i>Streptococcus pneumoniae</i> coâ€infection results in activation of coagulation and widespread pulmonary thrombosis in mice and humans. Journal of Pathology, 2016, 238, 85-97.	4.5	39
31	Characterization of the Host Response to Pichinde Virus Infection in the Syrian Golden Hamster by Species-Specific Kinome Analysis. Molecular and Cellular Proteomics, 2015, 14, 646-657.	3.8	16
32	The Role of Viral Protein Phosphorylation During Filovirus Infection. , 2015, , 791-813.		0
33	Antiviral Potential of ERK/MAPK and PI3K/AKT/mTOR Signaling Modulation for Middle East Respiratory Syndrome Coronavirus Infection as Identified by Temporal Kinome Analysis. Antimicrobial Agents and Chemotherapy, 2015, 59, 1088-1099.	3.2	344
34	Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names. Viruses, 2014, 6, 3663-3682.	3.3	49
35	ABSL-4 Aerobiology Biosafety and Technology at the NIH/NIAID Integrated Research Facility at Fort Detrick. Viruses, 2014, 6, 137-150.	3.3	15
36	Systems kinomics for characterizing host responses to high-consequence pathogens at the NIH/NIAID Integrated Research Facility-Frederick. Pathogens and Disease, 2014, 71, 190-198.	2.0	4

#	Article	IF	CITATIONS
37	The NIAID Integrated Research Facility at Frederick, Maryland: a unique international resource to facilitate medical countermeasure development for BSL-4 pathogens. Pathogens and Disease, 2014, 71, 213-218.	2.0	19
38	Repurposing of Clinically Developed Drugs for Treatment of Middle East Respiratory Syndrome Coronavirus Infection. Antimicrobial Agents and Chemotherapy, 2014, 58, 4885-4893.	3.2	564
39	Interferon- \hat{l}^2 and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays. Journal of General Virology, 2014, 95, 571-577.	2.9	191
40	Ebola Virus Modulates Transforming Growth Factor \hat{l}^2 Signaling and Cellular Markers of Mesenchyme-Like Transition in Hepatocytes. Journal of Virology, 2014, 88, 9877-9892.	3.4	49
41	Kinotypes: stable species- and individual-specific profiles of cellular kinase activity. BMC Genomics, 2013, 14, 854.	2.8	17
42	Manipulation of innate immunity by a bacterial secreted peptide: Lantibiotic nisin Z is selectively immunomodulatory. Innate Immunity, 2013, 19, 315-327.	2.4	82
43	PIIKA 2: An Expanded, Web-Based Platform for Analysis of Kinome Microarray Data. PLoS ONE, 2013, 8, e80837.	2.5	60
44	CHAPTER 6. Sample Preparation and Profiling: Probing the Kinome for Biomarkers and Therapeutic Targets: Peptide Arrays for Global Phosphorylation-Mediated Signal Transduction. RSC Drug Discovery Series, 2013, , 162-195.	0.3	5
45	Systems Kinomics Demonstrates Congo Basin Monkeypox Virus Infection Selectively Modulates Host Cell Signaling Responses as Compared to West African Monkeypox Virus. Molecular and Cellular Proteomics, 2012, 11, M111.015701.	3.8	59
46	Effective Adjunctive Therapy by an Innate Defense Regulatory Peptide in a Preclinical Model of Severe Malaria. Science Translational Medicine, 2012, 4, 135ra64.	12.4	81
47	Innate Defense Regulator Peptide 1018 in Wound Healing and Wound Infection. PLoS ONE, 2012, 7, e39373.	2.5	117
48	Biomembrane Interactions Reveal the Mechanism of Action of Surface-Immobilized Host Defense IDR-1010 Peptide. Chemistry and Biology, 2012, 19, 199-209.	6.0	41
49	Antibacterial Surfaces Based on Polymer Brushes: Investigation on the Influence of Brush Properties on Antimicrobial Peptide Immobilization and Antimicrobial Activity. Biomacromolecules, 2011, 12, 3715-3727.	5.4	132
50	Immunization with PCEP microparticles containing pertussis toxoid, CpG ODN and a synthetic innate defense regulator peptide induces protective immunity against pertussis. Vaccine, 2011, 29, 6540-6548.	3.8	61
51	The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials, 2011, 32, 3899-3909.	11.4	351
52	Stability, toxicity, and biological activity of host defense peptide BMAP28 and its inversed and retroâ€inversed isomers. Biopolymers, 2011, 96, 14-24.	2.4	39
53	Effect of BMAP-28 Antimicrobial Peptides on Leishmania major Promastigote and Amastigote Growth: Role of Leishmanolysin in Parasite Survival. PLoS Neglected Tropical Diseases, 2011, 5, e1141.	3.0	70
54	Ebola Virion Attachment and Entry into Human Macrophages Profoundly Effects Early Cellular Gene Expression. PLoS Neglected Tropical Diseases, 2011, 5, e1359.	3.0	79

#	Article	lF	CITATIONS
55	Structure-Activity Relationships of Multifunctional Host Defence Peptides. Mini-Reviews in Medicinal Chemistry, 2010, 10, 596-614.	2.4	34
56	Host Defense Peptides: Bridging Antimicrobial and Immunomodulatory Activities*., 2010, , 175-216.		2
57	Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials, 2010, 31, 9519-9526.	11.4	305
58	Structural Studies of a Peptide with Immune Modulating and Direct Antimicrobial Activity. Chemistry and Biology, 2010, 17, 970-980.	6.0	143
59	Synthetic Cationic Peptide IDR-1002 Provides Protection against Bacterial Infections through Chemokine Induction and Enhanced Leukocyte Recruitment. Journal of Immunology, 2010, 184, 2539-2550.	0.8	203
60	Importance of Residue 13 and the C-Terminus for the Structure and Activity of the Antimicrobial Peptide Aurein 2.2. Biophysical Journal, 2010, 99, 2926-2935.	0.5	27
61	Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides, 2010, 31, 1957-1965.	2.4	137
62	Retro-inversion enhances the adjuvant and CpG co-adjuvant activity of host defence peptide Bac2A. Vaccine, 2010, 28, 2945-2956.	3.8	9
63	Intracellular Receptor for Human Host Defense Peptide LL-37 in Monocytes. Journal of Immunology, 2009, 183, 2688-2696.	0.8	139
64	Screening and Characterization of Surface-Tethered Cationic Peptides for Antimicrobial Activity. Chemistry and Biology, 2009, 16, 58-69.	6.0	197
65	A novel vaccine adjuvant comprised of a synthetic innate defence regulator peptide and CpG oligonucleotide links innate and adaptive immunity. Vaccine, 2009, 27, 4662-4671.	3.8	72
66	Activation and Regulation of Toll-like Receptor 9: CpGs and Beyond. Mini-Reviews in Medicinal Chemistry, 2008, 8, 590-600.	2.4	17
67	Nucleic Acids Exert a Sequence-independent Cooperative Effect on Sequence-dependent Activation of Toll-like Receptor 9. Journal of Biological Chemistry, 2007, 282, 13944-13953.	3.4	29
68	The PhoQ-Activating Potential of Antimicrobial Peptides Contributes to Antimicrobial Efficacy and Is Predictive of the Induction of Bacterial Resistance. Antimicrobial Agents and Chemotherapy, 2007, 51, 4374-4381.	3.2	14
69	Phosphoproteome and Kinome Analysis: Unique Perspectives on the Same Problem. Current Analytical Chemistry, 2007, 3, 1-15.	1.2	18
70	Selective Extraction and Characterization of a Histidine-Phosphorylated Peptide Using Immobilized Copper(II) Ion Affinity Chromatography and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2003, 75, 1741-1747.	6.5	136
71	Intramolecular rearrangements as a consequence of the dephosphorylation of phosphoaspartate residues in proteins. FEBS Letters, 2003, 538, 77-80.	2.8	6
72	Overexpression of l-Isoaspartate O-Methyltransferase in Escherichia coli Increases Heat Shock Survival by a Mechanism Independent of Methyltransferase Activity. Journal of Biological Chemistry, 2003, 278, 50880-50886.	3.4	35

#	Article	IF	CITATIONS
73	The Influence of Protein Structure on the Products Emerging from Succinimide Hydrolysis. Journal of Biological Chemistry, 2002, 277, 30502-30507.	3.4	47
74	Substitution of Aspartate and Glutamate for Active Center Histidines in the Escherichia coliPhosphoenolpyruvate:Sugar Phosphotransferase System Maintain Phosphotransfer Potential. Journal of Biological Chemistry, 2001, 276, 41588-41593.	3.4	7
75	SARS-CoV-2 and the Missing Link of Intermediate Hosts in Viral Emergence - What We Can Learn From Other Betacoronaviruses. Frontiers in Virology, 0, 2, .	1.4	3