Jeffrey A Winkles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3978220/publications.pdf

Version: 2024-02-01

73 papers

5,557 citations

71102 41 h-index 70 g-index

73 all docs

73 docs citations

73 times ranked

4931 citing authors

#	Article	IF	CITATIONS
1	Nanoparticleâ€assisted, imageâ€guided laser interstitial thermal therapy for cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	6.1	4
2	Nanotherapeutic treatment of the invasive glioblastoma tumor microenvironment. Advanced Drug Delivery Reviews, 2022, 188, 114415.	13.7	20
3	Abstract PS18-24: Impact of protein corona formation on Fn14-targeted DART nanoparticle selectivity, uptake, and cytotoxicity on TNBC cells., 2021,,.		O
4	Leveraging the replicationâ€competent avianâ€like sarcoma virus/tumor virus receptorâ€A system for modeling human gliomas. Glia, 2021, 69, 2059-2076.	4.9	7
5	Elevated fibroblast growth factorâ€inducible 14 expression transforms proneuralâ€ike gliomas into more aggressive and lethal brain cancer. Glia, 2021, 69, 2199-2214.	4.9	7
6	Harnessing nanomedicine for enhanced immunotherapy for breast cancer brain metastases. Drug Delivery and Translational Research, 2021, 11, 2344-2370.	5. 8	8
7	Surface-Modified Nanodrug Carriers for Brain Cancer Treatment. Neuromethods, 2021, , 127-144.	0.3	2
8	Therapeutic efficacy and safety of a human fusion construct targeting the TWEAK receptor Fn14 and containing a modified granzyme B., 2020, 8, e001138.		4
9	Decreased nonspecific adhesivity, receptor-targeted therapeutic nanoparticles for primary and metastatic breast cancer. Science Advances, 2020, 6, eaax3931.	10.3	50
10	Leveraging Surface Plasmon Resonance to Dissect the Interfacial Properties of Nanoparticles: Implications for Tissue Binding and Tumor Penetration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102024.	3.3	12
11	Differential expression of the TWEAK receptor Fn14 in IDH1 wild-type and mutant gliomas. Journal of Neuro-Oncology, 2018, 138, 241-250.	2.9	9
12	Cross-species transcriptional analysis reveals conserved and host-specific neoplastic processes in mammalian glioma. Scientific Reports, 2018 , 8 , 1180 .	3.3	22
13	DRES-20. THE TNF RECEPTOR FAMILY MEMBER Fn14 IS HIGHLY EXPRESSED IN RECURRENT GLIOBLASTOMA (GBM) AND IN GBM PATIENT-DERIVED XENOGRAFTS WITH ACQUIRED TEMOZOLOMIDE RESISTANCE. Neuro-Oncology, 2018, 20, vi79-vi80.	1.2	0
14	Developments in Blood-Brain Barrier Penetrance and Drug Repurposing for Improved Treatment of Glioblastoma. Frontiers in Oncology, 2018, 8, 462.	2.8	108
15	EGFRvIII–Stat5 Signaling Enhances Glioblastoma Cell Migration and Survival. Molecular Cancer Research, 2018, 16, 1185-1195.	3.4	37
16	Oxaliplatin disrupts pathological features of glioma cells and associated macrophages independent of apoptosis induction. Journal of Neuro-Oncology, 2018, 140, 497-507.	2.9	31
17	The TNF receptor family member Fn14 is highly expressed in recurrent glioblastoma and in GBM patient-derived xenografts with acquired temozolomide resistance. Neuro-Oncology, 2018, 20, 1321-1330.	1.2	28
18	MR-guided transcranial focused ultrasound safely enhances interstitial dispersion of large polymeric nanoparticles in the living brain. PLoS ONE, 2018, 13, e0192240.	2.5	24

#	Article	IF	Citations
19	Decreased non-specific adhesivity, receptor targeted (DART) nanoparticles exhibit improved dispersion, cellular uptake, and tumor retention in invasive gliomas. Journal of Controlled Release, 2017, 267, 144-153.	9.9	34
20	Tumorâ€ŧargeted nanotherapeutics: overcoming treatment barriers for glioblastoma. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1439.	6.1	57
21	Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer. PLoS ONE, 2017, 12, e0174557.	2.5	16
22	Identification of aurintricarboxylic acid as a selective inhibitor of the TWEAK-Fn14 signaling pathway in glioblastoma cells. Oncotarget, 2017, 8, 12234-12246.	1.8	30
23	Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Current Pharmaceutical Design, 2016, 22, 1177-1193.	1.9	240
24	Pulsed ultrasound expands the extracellular and perivascular spaces of the brain. Brain Research, 2016, 1646, 543-550.	2.2	23
25	Non-specific binding and steric hindrance thresholds for penetration of particulate drug carriers within tumor tissue. Journal of Controlled Release, 2016, 238, 139-148.	9.9	46
26	Repurposing platinum-based chemotherapies for multi-modal treatment of glioblastoma. Oncolmmunology, 2016, 5, e1208876.	4.6	26
27	TWEAK activation of the non-canonical NF-κB signaling pathway differentially regulates melanoma and prostate cancer cell invasion. Oncotarget, 2016, 7, 81474-81492.	1.8	23
28	Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Current Pharmaceutical Design, 2016, 22, 1177-1193.	1.9	95
29	The TWEAK Receptor Fn14 Is an Src-Inducible Protein and a Positive Regulator of Src-Driven Cell Invasion. Molecular Cancer Research, 2015, 13, 575-583.	3.4	20
30	Surface plasmon resonance as a high throughput method to evaluate specific and non-specific binding of nanotherapeutics. Journal of Controlled Release, 2015, 219, 331-344.	9.9	52
31	Minimizing the non-specific binding of nanoparticles to the brain enables active targeting of Fn14-positive glioblastoma cells. Biomaterials, 2015, 42, 42-51.	11.4	60
32	Regulation of Fibroblast Growth Factor-inducible 14 (Fn14) Expression Levels via Ligand-independent Lysosomal Degradation. Journal of Biological Chemistry, 2014, 289, 12976-12988.	3.4	24
33	Development of Human Serine Protease-Based Therapeutics Targeting Fn14 and Identification of Fn14 as a New Target Overexpressed in TNBC. Molecular Cancer Therapeutics, 2014, 13, 2688-2705.	4.1	24
34	Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) promotes glioblastoma cell chemotaxis via Lyn activation. Carcinogenesis, 2014, 35, 218-226.	2.8	14
35	Antitumor Activity of a Humanized, Bivalent Immunotoxin Targeting Fn14-Positive Solid Tumors. Cancer Research, 2013, 73, 4439-4450.	0.9	33
36	The TWEAK Receptor Fn14 Is a Therapeutic Target in Melanoma: Immunotoxins Targeting Fn14 Receptor for Malignant Melanoma Treatment. Journal of Investigative Dermatology, 2013, 133, 1052-1062.	0.7	49

#	Article	IF	Citations
37	The HER2- and Heregulin β1 (HRC)–Inducible TNFR Superfamily Member Fn14 Promotes HRG-Driven Breast Cancer Cell Migration, Invasion, and MMP9 Expression. Molecular Cancer Research, 2013, 11, 393-404.	3.4	39
38	TWEAK/Fn14 Axis-Targeted Therapeutics: Moving Basic Science Discoveries to the Clinic. Frontiers in Immunology, 2013, 4, 473.	4.8	42
39	TWEAK-Independent Fn14 Self-Association and NF-κB Activation Is Mediated by the C-Terminal Region of the Fn14 Cytoplasmic Domain. PLoS ONE, 2013, 8, e65248.	2.5	36
40	Molecular determinants of lung cancer metastasis to the central nervous system. Translational Lung Cancer Research, 2013, 2, 273-83.	2.8	15
41	New insights into the functional consequences of ephrin A3 mutations in non-small cell lung cancer. Translational Lung Cancer Research, 2013, 2, 3-5.	2.8	18
42	Cdc42 and the Guanine Nucleotide Exchange Factors Ect2 and Trio Mediate Fn14-Induced Migration and Invasion of Glioblastoma Cells. Molecular Cancer Research, 2012, 10, 958-968.	3.4	75
43	Elevated Expression of Fn14 in Non-Small Cell Lung Cancer Correlates with Activated EGFR and Promotes Tumor Cell Migration and Invasion. American Journal of Pathology, 2012, 181, 111-120.	3.8	52
44	Development and Characterization of a Potent Immunoconjugate Targeting the Fn14 Receptor on Solid Tumor Cells. Molecular Cancer Therapeutics, 2011, 10, 1276-1288.	4.1	56
45	Full-length, Membrane-anchored TWEAK Can Function as a Juxtacrine Signaling Molecule and Activate the NF-I ^o B Pathway. Journal of Biological Chemistry, 2010, 285, 17432-17441.	3.4	66
46	Tumor Necrosis Factor–Like Weak Inducer of Apoptosis Stimulation of Glioma Cell Survival Is Dependent on Akt2 Function. Molecular Cancer Research, 2009, 7, 1871-1881.	3.4	54
47	The TWEAK–Fn14 cytokine–receptor axis: discovery, biology and therapeutic targeting. Nature Reviews Drug Discovery, 2008, 7, 411-425.	46.4	483
48	The Fibroblast Growth Factor–Inducible 14 Receptor Is Highly Expressed in HER2-Positive Breast Tumors and Regulates Breast Cancer Cell Invasive Capacity. Molecular Cancer Research, 2008, 6, 725-734.	3.4	75
49	Polo-like Kinase 3 Functions as a Tumor Suppressor and Is a Negative Regulator of Hypoxia-Inducible Factor-1α under Hypoxic Conditions. Cancer Research, 2008, 68, 4077-4085.	0.9	106
50	TWEAKâ€"Fn14 Pathway Inhibition Protects the Integrity of the Neurovascular Unit during Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 534-544.	4.3	86
51	Role of TWEAK and Fn14 in tumor biology. Frontiers in Bioscience - Landmark, 2007, 12, 2761.	3.0	41
52	Molecular pathways triggering glioma cell invasion. Expert Review of Molecular Diagnostics, 2006, 6, 613-626.	3.1	72
53	TWEAK and Fn14: New molecular targets for cancer therapy?. Cancer Letters, 2006, 235, 11-17.	7.2	59
54	TWEAK binding to the Fn14 cysteine-rich domain depends on charged residues located in both the A1 and D2 modules. Biochemical Journal, 2006, 397, 297-304.	3.7	47

#	Article	IF	CITATIONS
55	TWEAK, via its receptor Fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration. EMBO Journal, 2006, 25, 5826-5839.	7.8	189
56	Increased Fibroblast Growth Factor-Inducible 14 Expression Levels Promote Glioma Cell Invasion via Rac1 and Nuclear Factor-κB and Correlate with Poor Patient Outcome. Cancer Research, 2006, 66, 9535-9542.	0.9	172
57	Inhibition of TWEAK activity as a new treatment for inflammatory and degenerative diseases. Drug News and Perspectives, 2006, 19, 589.	1.5	19
58	Differential regulation of polo-like kinase $1, 2, 3$, and 4 gene expression in mammalian cells and tissues. Oncogene, 2005, 24, 260-266.	5.9	140
59	Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Increases the Permeability of the Neurovascular Unit through Nuclear Factor-ÂB Pathway Activation. Journal of Neuroscience, 2005, 25, 10094-10100.	3.6	115
60	The Tumor Necrosis Factor-like Weak Inducer of Apoptosis (TWEAK)-Fibroblast Growth Factor-inducible 14 (Fn14) Signaling System Regulates Glioma Cell Survival via NFκB Pathway Activation and BCL-XL/BCL-W Expression. Journal of Biological Chemistry, 2005, 280, 3483-3492.	3.4	166
61	Multiple Members of the TNF Superfamily Contribute to IFN- \hat{l}^3 -Mediated Inhibition of Erythropoiesis. Journal of Immunology, 2005, 175, 1464-1472.	0.8	81
62	A Soluble Fn14-Fc Decoy Receptor Reduces Infarct Volume in a Murine Model of Cerebral Ischemia. American Journal of Pathology, 2005, 166, 511-520.	3.8	117
63	Soluble Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Overexpression in HEK293 Cells Promotes Tumor Growth and Angiogenesis in Athymic Nude Mice. Cancer Research, 2004, 64, 8968-8972.	0.9	82
64	The Human Fn14 Receptor Gene Is Up-Regulated in Migrating Glioma Cells in Vitro and Overexpressed in Advanced Glial Tumors. American Journal of Pathology, 2003, 162, 1313-1321.	3.8	126
65	TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor. Cytokine and Growth Factor Reviews, 2003, 14, 241-249.	7.2	243
66	TWEAK Is an Endothelial Cell Growth and Chemotactic Factor That Also Potentiates FGF-2 and VEGF-A Mitogenic Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 594-600.	2.4	152
67	The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation. Biochemical Journal, 2003, 371, 395-403.	3.7	173
68	Fibroblast Growth Factor-Inducible-14 Is Induced in Axotomized Neurons and Promotes Neurite Outgrowth. Journal of Neuroscience, 2003, 23, 9675-9686.	3.6	185
69	A Novel TNF Receptor Family Member Binds TWEAK and Is Implicated in Angiogenesis. Immunity, 2001, 15, 837-846.	14.3	347
70	The Fn14 Immediate-Early Response Gene Is Induced During Liver Regeneration and Highly Expressed in Both Human and Murine Hepatocellular Carcinomas. American Journal of Pathology, 2000, 156, 1253-1261.	3.8	175
71	The Mitogen-inducible Fn14 Gene Encodes a Type I Transmembrane Protein that Modulates Fibroblast Adhesion and Migration. Journal of Biological Chemistry, 1999, 274, 33166-33176.	3.4	187
72	Expression and phosphorylation of fibroblast-growth-factor-inducible kinase (Fnk) during cell-cycle progression. Biochemical Journal, 1998, 333, 655-660.	3.7	51

#	Article	IF	CITATIONS
73	Identification by Targeted Differential Display of an Immediate Early Gene Encoding a Putative Serine/Threonine Kinase. Journal of Biological Chemistry, 1995, 270, 10351-10357.	3.4	176