Hongliang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3977805/publications.pdf

Version: 2024-02-01

26 papers 1,293 citations

623734 14 h-index 25 g-index

26 all docs

26 docs citations

times ranked

26

2709 citing authors

#	Article	IF	CITATIONS
1	Bacteriophage protein Gp46 is a cross-species inhibitor of nucleoid-associated HU proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	7
2	Cytoplasmic domain and enzymatic activity of ACE2 are not required for PI4KB dependent endocytosis entry of SARS-CoV-2 into host cells. Virologica Sinica, 2022, 37, 380-389.	3.0	10
3	<i>N</i> -Acetyltransferase 8 Promotes Viral Replication by Increasing the Stability of Enterovirus 71 Nonstructural Proteins. Journal of Virology, 2022, 96, jvi0011922.	3.4	6
4	Glycans of SARS-CoV-2 Spike Protein in Virus Infection and Antibody Production. Frontiers in Molecular Biosciences, 2021, 8, 629873.	3.5	71
5	Reverse Genetic Approaches for the Generation of Full Length and Subgenomic Replicon of EV71 Virus. Frontiers in Microbiology, 2021, 12, 665879.	3.5	7
6	A Bacteriophage DNA Mimic Protein Employs a Non-specific Strategy to Inhibit the Bacterial RNA Polymerase. Frontiers in Microbiology, 2021, 12, 692512.	3.5	7
7	Comparative colloidal stability, antitumor efficacy, and immunosuppressive effect of commercial paclitaxel nanoformulations. Journal of Nanobiotechnology, 2021, 19, 199.	9.1	12
8	Resonance assignments of the cytoplasmic domain of ECF sigma factor W pathway protein YsdB from Bacillus subtilis. Biomolecular NMR Assignments, 2021, 15, 103-106.	0.8	0
9	Bacteriophage Twort protein Gp168 is a \hat{I}^2 -clamp inhibitor by occupying the DNA sliding channel. Nucleic Acids Research, 2021, 49, 11367-11378.	14.5	6
10	Resonance assignments of bacteriophage T4 YO4L protein. Biomolecular NMR Assignments, 2020, 14, 51-54.	0.8	2
11	Resonance assignments of bacteriophage SPO1 Gp49 protein. Biomolecular NMR Assignments, 2020, 14, 111-114.	0.8	2
12	Nir2 Is an Effector of VAPs Necessary for Efficient Hepatitis C Virus Replication and Phosphatidylinositol 4-Phosphate Enrichment at the Viral Replication Organelle. Journal of Virology, 2019, 93, .	3 . 4	22
13	Tauroursodeoxycholic acid (TUDCA) inhibits influenza A viral infection by disrupting viral proton channel M2. Science Bulletin, 2019, 64, 180-188.	9.0	12
14	Continuous de novo generation of spatially segregated hepatitis C virus replication organelles revealed by pulse-chase imaging. Journal of Hepatology, 2017, 66, 55-66.	3.7	18
15	Mechanisms of Cellular Membrane Reorganization to Support Hepatitis C Virus Replication. Viruses, 2016, 8, 142.	3. 3	28
16	Thermal and magnetic dual-responsive liposomes with a cell-penetrating peptide-siRNA conjugate for enhanced and targeted cancer therapy. Colloids and Surfaces B: Biointerfaces, 2016, 146, 607-615.	5.0	45
17	Dual stimulus of hyperthermia and intracellular redox environment triggered release of siRNA for tumor-specific therapy. International Journal of Pharmaceutics, 2016, 506, 158-173.	5. 2	27
18	Acid Sensitive Polymeric Micelles Combining Folate and Bioreducible Conjugate for Specific Intracellular siRNA Delivery. Macromolecular Bioscience, 2016, 16, 759-773.	4.1	18

#	Article	IF	CITATIONS
19	Cationic nanoparticles directly bind angiotensin-converting enzyme 2 and induce acute lung injury in mice. Particle and Fibre Toxicology, 2015, 12, 4.	6.2	44
20	Competitive Inhibition of the Endoplasmic Reticulum Signal Peptidase by Non-cleavable Mutant Preprotein Cargos. Journal of Biological Chemistry, 2015, 290, 28131-28140.	3.4	24
21	Oxysterol-Binding Protein Is a Phosphatidylinositol 4-Kinase Effector Required for HCV Replication Membrane Integrity and Cholesterol Trafficking. Gastroenterology, 2014, 146, 1373-1385.e11.	1.3	138
22	Rab18 Binds to Hepatitis C Virus NS5A and Promotes Interaction between Sites of Viral Replication and Lipid Droplets. PLoS Pathogens, 2013, 9, e1003513.	4.7	125
23	Avian influenza H5N1: an update on molecular pathogenesis. Science in China Series C: Life Sciences, 2009, 52, 459-463.	1.3	18
24	Influenza A virus H5N1 entry into host cells is through clathrin-dependent endocytosis. Science in China Series C: Life Sciences, 2009, 52, 464-469.	1.3	36
25	SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Research, 2008, 18, 290-301.	12.0	597
26	Molecular pathogenesis of severe acute respiratory syndrome. Microbes and Infection, 2007, 9, 119-126.	1.9	11