
Kwnag-Im Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3977804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systematic Approach to Find the Global Minimum of Relaxation Dispersion Data for Protein-Induced B–Z Transition of DNA. International Journal of Molecular Sciences, 2021, 22, 3517.	4.1	2
2	Non-Canonical Helical Structure of Nucleic Acids Containing Base-Modified Nucleotides. International Journal of Molecular Sciences, 2021, 22, 9552.	4.1	9
3	Conformational exchange of the Zα domain of human RNA editing enzyme ADAR1 studied by NMR spectroscopy. Biochemical and Biophysical Research Communications, 2021, 580, 63-66.	2.1	2
4	Protein-induced B-Z transition of DNA duplex containing a 2′-OMe guanosine. Biochemical and Biophysical Research Communications, 2020, 533, 417-423.	2.1	2
5	Molecular heterogeneity in aqueous cosolvent systems. Journal of Chemical Physics, 2020, 152, 190901.	3.0	17
6	Liquid–Liquid Phase Separation Produces Fast H-Bond Dynamics in DMSO–Water Mixtures. Journal of Physical Chemistry Letters, 2020, 11, 1903-1908.	4.6	28
7	Dynamics Studies of DNA with Non-canonical Structure Using NMR Spectroscopy. International Journal of Molecular Sciences, 2020, 21, 2673.	4.1	12
8	Empirical S=O stretch vibrational frequency map. Journal of Chemical Physics, 2019, 151, 234107.	3.0	16
9	Crowding Stabilizes DMSO–Water Hydrogen-Bonding Interactions. Journal of Physical Chemistry B, 2018, 122, 5984-5990.	2.6	37
10	Quantifying Hydrogenâ€Bond Populations in Dimethyl Sulfoxide/Water Mixtures. Angewandte Chemie - International Edition, 2017, 56, 11375-11379.	13.8	94
11	Quantifying Hydrogenâ€Bond Populations in Dimethyl Sulfoxide/Water Mixtures. Angewandte Chemie, 2017, 129, 11533-11537.	2.0	25
12	Titelbild: Quantifying Hydrogenâ€Bond Populations in Dimethyl Sulfoxide/Water Mixtures (Angew.) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
13	How Sensitive is the Amideâ€I Vibration of the Polypeptide Backbone to Electric Fields?. ChemPhysChem, 2015, 16, 3595-3598.	2.1	16
14	Kinetics of peptide folding in lipid membranes. Biopolymers, 2015, 104, 281-290.	2.4	5
15	Neighboring Residue Effects in Terminally Blocked Dipeptides: Implications for Residual Secondary Structures in Intrinsically Unfolded/Disordered Proteins. Chirality, 2014, 26, 443-452.	2.6	11
16	A comprehensive library of blocked dipeptides reveals intrinsic backbone conformational propensities of unfolded proteins. Proteins: Structure, Function and Bioinformatics, 2012, 80, 977-990.	2.6	30
17	Conformational distributions of denatured and unstructured proteins are similar to those of 20Â×Â20 blocked dipeptides. Journal of Biomolecular NMR, 2012, 53, 25-41.	2.8	22

18Circular dichroism eigenspectra of polyproline II and βâ€strand conformers of trialanine in water:
Singular value decomposition analysis. Chirality, 2010, 22, E186-201.2.639

KWNAG-IM OH

#	Article	IF	CITATIONS
19	Azido Gauche Effect on the Backbone Conformation of β-Azidoalanine Peptides. Journal of Physical Chemistry B, 2010, 114, 13021-13029.	2.6	27
20	Classical and quantum mechanical/molecular mechanical molecular dynamics simulations of alanine dipeptide in water: Comparisons with IR and vibrational circular dichroism spectra. Journal of Chemical Physics, 2008, 128, 105106.	3.0	78
21	β-Azidoalanine as an IR Probe: Application to Amyloid Aβ(16-22) Aggregation. Journal of Physical Chemistry B, 2008, 112, 10352-10357.	2.6	108
22	Azido-derivatized compounds as IR probes of local electrostatic environment: Theoretical studies. Journal of Chemical Physics, 2008, 129, 174512.	3.0	72
23	Nitrile and thiocyanate IR probes: Quantum chemistry calculation studies and multivariate least-square fitting analysis. Journal of Chemical Physics, 2008, 128, 134506.	3.0	168
24	Nitrile and thiocyanate IR probes: Molecular dynamics simulation studies. Journal of Chemical Physics, 2008, 128, 154504.	3.0	124
25	Dipeptide Structure Determination by Vibrational Circular Dichroism Combined with Quantum Chemistry Calculations. ChemPhysChem, 2007, 8, 2218-2226.	2.1	19
26	Structure ofN-Acetylproline Amide in Liquid Water:Â Experimentally Measured and Numerically Simulated Infrared and Vibrational Circular Dichroism Spectraâ€. Journal of Physical Chemistry B, 2006, 110, 18834-18843.	2.6	38
27	Site-Specific Hydrogen-Bonding Interaction between N-Acetylproline Amide and Protic Solvent Molecules:  Comparisons of IR and VCD Measurements with MD Simulations. Journal of Physical Chemistry A, 2006, 110, 13355-13365.	2.5	20