List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3977424/publications.pdf Version: 2024-02-01

KASDED R HANSEN

#	Article	IF	CITATIONS
1	Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacological Reviews, 2010, 62, 405-496.	16.0	2,973
2	Structure, function, and allosteric modulation of NMDA receptors. Journal of General Physiology, 2018, 150, 1081-1105.	1.9	363
3	Distinct Functional and Pharmacological Properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA Receptors. Neuron, 2014, 81, 1084-1096.	8.1	246
4	Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacological Reviews, 2021, 73, 1469-1658.	16.0	237
5	Deorphanization of GPRC6A: A Promiscuous l-α-Amino Acid Receptor with Preference for Basic Amino Acids. Molecular Pharmacology, 2005, 67, 589-597.	2.3	194
6	Control of NMDA Receptor Function by the NR2 Subunit Amino-Terminal Domain. Journal of Neuroscience, 2009, 29, 12045-12058.	3.6	189
7	Subunit-Specific Agonist Activity at NR2A-, NR2B-, NR2C-, and NR2D-Containing <i>N</i> -Methyl-d-aspartate Glutamate Receptors. Molecular Pharmacology, 2007, 72, 907-920.	2.3	151
8	lonotropic glutamate-like receptor δ2 binds <scp>d</scp> -serine and glycine. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14116-14121.	7.1	138
9	A subunit-selective potentiator of NR2C- and NR2D-containing NMDA receptors. Nature Communications, 2010, 1, 90.	12.8	137
10	Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nature Communications, 2014, 5, 3251.	12.8	128
11	Location of the Antidepressant Binding Site in the Serotonin Transporter. Journal of Biological Chemistry, 2009, 284, 10276-10284.	3.4	105
12	NMDA Receptors in the Central Nervous System. Methods in Molecular Biology, 2017, 1677, 1-80.	0.9	105
13	Subunit-Selective Allosteric Inhibition of Glycine Binding to NMDA Receptors. Journal of Neuroscience, 2012, 32, 6197-6208.	3.6	99
14	Control of Assembly and Function of Glutamate Receptors by the Amino-Terminal Domain. Molecular Pharmacology, 2010, 78, 535-549.	2.3	95
15	Mutational Mapping and Modeling of the Binding Site for (S)-Citalopram in the Human Serotonin Transporter. Journal of Biological Chemistry, 2010, 285, 2051-2063.	3.4	91
16	Mechanism for Noncompetitive Inhibition by Novel GluN2C/D <i>N</i> -Methyl-d-aspartate Receptor Subunit-Selective Modulators. Molecular Pharmacology, 2011, 80, 782-795.	2.3	89
17	Quinazolin-4-one Derivatives: A Novel Class of Noncompetitive NR2C/D Subunit-Selective <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptor Antagonists. Journal of Medicinal Chemistry, 2010, 53, 5476-5490.	6.4	83
18	Structural Determinants of Agonist Efficacy at the Glutamate Binding Site of <i>N</i> -Methyl-d-Aspartate Receptors. Molecular Pharmacology, 2013, 84, 114-127.	2.3	76

#	Article	IF	CITATIONS
19	Pharmacological characterization of mouse GPRC6A, an L $\cdot \hat{l} \pm$ -amino-acid receptor modulated by divalent cations. British Journal of Pharmacology, 2007, 150, 798-807.	5.4	74
20	Molecular pharmacology of human NMDA receptors. Neurochemistry International, 2012, 61, 601-609.	3.8	74
21	Structural Basis for Negative Allosteric Modulation of GluN2A-Containing NMDA Receptors. Neuron, 2016, 91, 1316-1329.	8.1	74
22	Structural Determinants and Mechanism of Action of a GluN2C-selective NMDA Receptor Positive Allosteric Modulator. Molecular Pharmacology, 2014, 86, 548-560.	2.3	69
23	Structural aspects of AMPA receptor activation, desensitization and deactivation. Current Opinion in Neurobiology, 2007, 17, 281-288.	4.2	68
24	Structural and Mechanistic Determinants of a Novel Site for Noncompetitive Inhibition of GluN2D-Containing NMDA Receptors. Journal of Neuroscience, 2011, 31, 3650-3661.	3.6	67
25	Modulation of the Dimer Interface at Ionotropic Glutamate-Like Receptor δ2 by d-Serine and Extracellular Calcium. Journal of Neuroscience, 2009, 29, 907-917.	3.6	57
26	GluN1 splice variant control of GluN1/GluN2D NMDA receptors. Journal of Physiology, 2012, 590, 3857-3875.	2.9	52
27	Synthesis, Binding Affinity at Glutamic Acid Receptors, Neuroprotective Effects, and Molecular Modeling Investigation of Novel Dihydroisoxazole Amino Acids. Journal of Medicinal Chemistry, 2005, 48, 6315-6325.	6.4	43
28	Design, Synthesis, and Structure–Activity Relationship of a Novel Series of GluN2C-Selective Potentiators. Journal of Medicinal Chemistry, 2014, 57, 2334-2356.	6.4	43
29	Triheteromeric GluN1/GluN2A/GluN2C NMDARs with Unique Single-Channel Properties Are the Dominant Receptor Population in Cerebellar Granule Cells. Neuron, 2018, 99, 315-328.e5.	8.1	42
30	An allosteric binding site at the human serotonin transporter mediates the inhibition of escitalopram by R-citalopram: Kinetic binding studies with the ALI/VFL–SI/TT mutant. Neuroscience Letters, 2009, 462, 207-212.	2.1	41
31	Implementation of a Fluorescence-Based Screening Assay Identifies Histamine H3 Receptor Antagonists Clobenpropit and Iodophenpropit as Subunit-Selective <i>N</i> -Methyl-d-Aspartate Receptor Antagonists. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 650-662.	2.5	40
32	Allosteric Interactions between NMDA Receptor Subunits Shape the Developmental Shift in Channel Properties. Neuron, 2017, 94, 58-64.e3.	8.1	38
33	Functional and pharmacological properties of triheteromeric GluN1/2B/2D NMDA receptors. Journal of Physiology, 2019, 597, 5495-5514.	2.9	38
34	Structure-based discovery of antagonists for GluN3-containing N-methyl-d-aspartate receptors. Neuropharmacology, 2013, 75, 324-336.	4.1	36
35	Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6942-E6951.	7.1	33
36	Pharmacological Characterization of Ligands at Recombinant NMDA Receptor Subtypes by Electrophysiological Recordings and Intracellular Calcium Measurements. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 304-315.	1.1	31

#	Article	IF	CITATIONS
37	Augmentation of Anticancer Drug Efficacy in Murine Hepatocellular Carcinoma Cells by a Peripherally Acting Competitive <i>N</i> -Methyl- <scp>d</scp> -aspartate (NMDA) Receptor Antagonist. Journal of Medicinal Chemistry, 2017, 60, 9885-9904.	6.4	27
38	(S)-2-Amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic Acid, a Potent and Selective Agonist at the GluR5 Subtype of Ionotropic Glutamate Receptors. Synthesis, Modeling, and Molecular Pharmacology. Journal of Medicinal Chemistry, 2003, 46, 1350-1358.	6.4	26
39	Pharmacology and Structural Analysis of Ligand Binding to the Orthosteric Site of Glutamate-Like GluD2 Receptors. Molecular Pharmacology, 2016, 89, 253-262.	2.3	26
40	Tweaking Agonist Efficacy at N-Methyl-d-aspartate Receptors by Site-Directed Mutagenesis. Molecular Pharmacology, 2005, 68, 1510-1523.	2.3	24
41	4-Hydroxy-1,2,5-oxadiazol-3-yl Moiety as Bioisoster of the Carboxy Function. Synthesis, Ionization Constants, and Molecular Pharmacological Characterization at Ionotropic Glutamate Receptors of Compounds Related to Glutamate and Its Homologues. Journal of Medicinal Chemistry, 2010, 53, 4110-4118.	6.4	24
42	Pharmacology of triheteromeric N-Methyl-d-Aspartate Receptors. Neuroscience Letters, 2016, 617, 240-246.	2.1	24
43	Properties of Triheteromeric <i>N</i> -Methyl-d-Aspartate Receptors Containing Two Distinct GluN1 Isoforms. Molecular Pharmacology, 2018, 93, 453-467.	2.3	24
44	The respective N-hydroxypyrazole analogues of the classical glutamate receptor ligands ibotenic acid and (RS)-2-amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid. European Journal of Pharmacology, 2004, 499, 35-44.	3.5	23
45	FLIPR® Assays of Intracellular Calcium in GPCR Drug Discovery. Methods in Molecular Biology, 2009, 552, 269-278.	0.9	23
46	The use of <i>Xenopus</i> oocytes in drug screening. Expert Opinion on Drug Discovery, 2011, 6, 141-153.	5.0	23
47	Novel 3â€Carboxy―and 3â€Phosphonopyrazoline Amino Acids as Potent and Selective NMDA Receptor Antagonists: Design, Synthesis, and Pharmacological Characterization. ChemMedChem, 2010, 5, 1465-1475.	3.2	22
48	Crystal Structure and Pharmacological Characterization of a Novel N-Methyl-d-aspartate (NMDA) Receptor Antagonist at the GluN1 Glycine Binding Site. Journal of Biological Chemistry, 2013, 288, 33124-33135.	3.4	22
49	Synthesis and pharmacology of glutamate receptor ligands: new isothiazole analogues of ibotenic acid. Organic and Biomolecular Chemistry, 2007, 5, 463-471.	2.8	21
50	Functional assessment of triheteromeric NMDA receptors containing a human variant associated with epilepsy. Journal of Physiology, 2019, 597, 1691-1704.	2.9	20
51	N-Hydroxypyrazolyl Glycine Derivatives as Selective N-Methyl-d-aspartic Acid Receptor Ligands. Journal of Medicinal Chemistry, 2008, 51, 4179-4187.	6.4	19
52	Subtype-Specific Agonists for NMDA Receptor Glycine Binding Sites. ACS Chemical Neuroscience, 2017, 8, 1681-1687.	3.5	19
53	Use of the 4-Hydroxytriazole Moiety as a Bioisosteric Tool in the Development of Ionotropic Glutamate Receptor Ligands. Journal of Medicinal Chemistry, 2019, 62, 4467-4482.	6.4	18
54	Xenopus Oocyte Electrophysiology in GPCR Drug Discovery. Methods in Molecular Biology, 2009, 552, 343-357.	0.9	18

#	Article	IF	CITATIONS
55	Negative allosteric modulation of GluN1/GluN3 NMDA receptors. Neuropharmacology, 2020, 176, 108117.	4.1	17
56	Development of Radiolabeled Ligands Targeting the Glutamate Binding Site of the <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptor as Potential Imaging Agents for Brain. Journal of Medicinal Chemistry, 2016, 59, 11110-11119.	6.4	16
57	Identification of AICP as a GluN2C-Selective <i>N</i> -Methyl-d-Aspartate Receptor Superagonist at the GluN1 Glycine Site. Molecular Pharmacology, 2017, 92, 151-161.	2.3	16
58	Modal gating of GluN1/GluN2D NMDA receptors. Neuropharmacology, 2013, 71, 184-190.	4.1	15
59	Binding of ArgTX-636 in the NMDA Receptor Ion Channel. Journal of Molecular Biology, 2015, 427, 176-189.	4.2	13
60	PTC-174, a positive allosteric modulator of NMDA receptors containing GluN2C or GluN2D subunits. Neuropharmacology, 2020, 173, 107971.	4.1	13
61	Structure and Function of the NMDA Receptor. , 2008, , 289-316.		11
62	Selective Cell-Surface Expression of Triheteromeric NMDA Receptors. Methods in Molecular Biology, 2017, 1677, 145-162.	0.9	11
63	Stereocontrolled Synthesis and Pharmacological Evaluation of Azetidineâ€2,3â€Dicarboxylic Acids at NMDA Receptors. ChemMedChem, 2009, 4, 110-117.	3.2	10
64	Distinct GluN1 and GluN2 Structural Determinants for Subunit-Selective Positive Allosteric Modulation of <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptors. ACS Chemical Neuroscience, 2021, 12, 79-98.	3.5	10
65	Development of 2′-Substituted (2S,1′R,2′S)-2-(Carboxycyclopropyl)glycine Analogues as PotentN-Methyl-d-aspartic Acid Receptor Agonists. Journal of Medicinal Chemistry, 2013, 56, 4071-4081.	6.4	9
66	Synaptic Dysfunction by Mutations in GRIN2B: Influence of Triheteromeric NMDA Receptors on Gain-of-Function and Loss-of-Function Mutant Classification. Brain Sciences, 2022, 12, 789.	2.3	9
67	Partial Agonists and Subunit Selectivity at NMDA Receptors. Chemistry - A European Journal, 2010, 16, 13910-13918.	3.3	8
68	Utilizing a C(sp3)–H Activation Strategy and Structure–Activity Relationship Studies at the Ionotropic Glutamate Receptors. ACS Chemical Neuroscience, 2020, 11, 674-701.	3.5	8
69	Derivatives of (<i>R</i>)-3-(5-Furanyl)carboxamido-2-aminopropanoic Acid as Potent NMDA Receptor Glycine Site Agonists with GluN2 Subunit-Specific Activity. Journal of Medicinal Chemistry, 2022, 65, 734-746.	6.4	5
70	Design and Synthesis of 2,3- <i>trans</i> -Proline Analogues as Ligands for Ionotropic Glutamate Receptors and Excitatory Amino Acid Transporters. ACS Chemical Neuroscience, 2019, 10, 2989-3007.	3.5	4
71	Improved synthetic route for the GluN2-specific NMDA receptor glycine site agonist AICP. Tetrahedron Letters, 2020, 61, 151653.	1.4	4
72	Stereoselective synthesis of novel 2′-(S)-CCG-IV analogues as potent NMDA receptor agonists. European Journal of Medicinal Chemistry, 2021, 212, 113099.	5.5	3

#	Article	IF	CITATIONS
73	Subunit-Specific Activation of NMDA Receptors. Biophysical Journal, 2010, 98, 525a-526a.	0.5	2
74	How Glutamate Receptor Subunits Mix and Match: Details Uncovered. Neuron, 2011, 71, 198-200.	8.1	2
75	Mechanistic twists and turns. Nature Chemical Biology, 2014, 10, 698-699.	8.0	2
76	Activation of Recombinant Rat GluN1/gluN2D NMDA Receptors. Biophysical Journal, 2010, 98, 525a.	0.5	1
77	Structural Correlates of Ionotropic Glutamate Receptor Function. , 2008, , 247-297.		Ο
78	6.2 Structure-Function Correlates of Glutamate-Gated Ion Channels. , 2012, , 4-30.		0
79	A Human Mutation in the M4 Helix of CluN2A Accelerates Forward Gating Transitions in NMDA Receptors. Biophysical Journal, 2014, 106, 150a.	0.5	Ο
80	Activation of NMDA receptors and postsynaptic events. Reactome - A Curated Knowledgebase of Biological Pathways, 0, 67, .	0.0	0