## Micheal Sulyok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3976742/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Communications in Mass Spectrometry, 2006, 20, 2649-2659.                                                          | 1.5  | 615       |
| 2  | A liquid chromatography/tandem mass spectrometric multi-mycotoxin method for the quantification of 87 analytes and its application to semi-quantitative screening of moldy food samples. Analytical and Bioanalytical Chemistry, 2007, 389, 1505-1523.                     | 3.7  | 376       |
| 3  | Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric<br>method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four<br>model food matrices. Journal of Chromatography A, 2014, 1362, 145-156. | 3.7  | 373       |
| 4  | Mycotoxin analysis: An update. Food Additives and Contaminants - Part A Chemistry, Analysis, Control,<br>Exposure and Risk Assessment, 2008, 25, 152-163.                                                                                                                  | 2.3  | 285       |
| 5  | Multi-Mycotoxin Screening Reveals the Occurrence of 139 Different Secondary Metabolites in Feed and Feed Ingredients. Toxins, 2013, 5, 504-523.                                                                                                                            | 3.4  | 260       |
| 6  | Quantitation of Mycotoxins in Food and Feed from Burkina Faso and Mozambique Using a Modern<br>LC-MS/MS Multitoxin Method. Journal of Agricultural and Food Chemistry, 2012, 60, 9352-9363.                                                                                | 5.2  | 204       |
| 7  | Application of an LC–MS/MS based multi-mycotoxin method for the semi-quantitative determination of mycotoxins occurring in different types of food infected by moulds. Food Chemistry, 2010, 119, 408-416.                                                                 | 8.2  | 189       |
| 8  | Determination of multi-mycotoxin occurrence in cereals, nuts and their products in Cameroon by liquid chromatography tandem mass spectrometry (LC-MS/MS). Food Control, 2013, 31, 438-453.                                                                                 | 5.5  | 170       |
| 9  | New insights into the human metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone.<br>Toxicology Letters, 2013, 220, 88-94.                                                                                                                                 | 0.8  | 165       |
| 10 | Occurrence of deoxynivalenol and its 3- <i>β</i> -D-glucoside in wheat and maize. Food Additives and<br>Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2009, 26, 507-511.                                                               | 2.3  | 163       |
| 11 | Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of > 500<br>mycotoxins and other secondary metabolites in food crops: challenges and solutions. Analytical and<br>Bioanalytical Chemistry, 2020, 412, 2607-2620.                          | 3.7  | 160       |
| 12 | Simultaneous determination of 186 fungal and bacterial metabolites in indoor matrices by liquid chromatography/tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2009, 395, 1355-1372.                                                                     | 3.7  | 159       |
| 13 | Co-Occurrence of Regulated, Masked and Emerging Mycotoxins and Secondary Metabolites in Finished<br>Feed and Maize—An Extensive Survey. Toxins, 2016, 8, 363.                                                                                                              | 3.4  | 151       |
| 14 | Assessment of human deoxynivalenol exposure using an LC–MS/MS based biomarker method.<br>Toxicology Letters, 2012, 211, 85-90.                                                                                                                                             | 0.8  | 145       |
| 15 | Development and validation of a (semi-)quantitative UHPLC-MS/MS method for the determination of 191<br>mycotoxins and other fungal metabolites in almonds, hazelnuts, peanuts and pistachios. Analytical<br>and Bioanalytical Chemistry, 2013, 405, 5087-5104.             | 3.7  | 137       |
| 16 | The velvet complex governs mycotoxin production and virulence of <i><scp>F</scp>usarium oxysporum</i> on plant and mammalian hosts. Molecular Microbiology, 2013, 87, 49-65.                                                                                               | 2.5  | 132       |
| 17 | Chromatographic methods for the simultaneous determination of mycotoxins and their conjugates in cereals. International Journal of Food Microbiology, 2007, 119, 33-37.                                                                                                    | 4.7  | 131       |
| 18 | Mycotoxin exposure in rural residents in northern Nigeria: A pilot study using multi-urinary biomarkers. Environment International, 2014, 66, 138-145.                                                                                                                     | 10.0 | 129       |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Deoxynivalenol and other selected Fusarium toxins in Swedish oats — Occurrence and correlation to specific Fusarium species. International Journal of Food Microbiology, 2013, 167, 276-283.                                          | 4.7 | 123       |
| 20 | Multiple mycotoxin exposure determined by urinary biomarkers in rural subsistence farmers in the former Transkei, South Africa. Food and Chemical Toxicology, 2013, 62, 217-225.                                                      | 3.6 | 123       |
| 21 | Development and validation of a rapid multiâ€biomarker liquid chromatography/tandem mass<br>spectrometry method to assess human exposure to mycotoxins. Rapid Communications in Mass<br>Spectrometry, 2012, 26, 1533-1540.            | 1.5 | 121       |
| 22 | Deoxynivalenol and other selected Fusarium toxins in Swedish wheat — Occurrence and correlation to specific Fusarium species. International Journal of Food Microbiology, 2013, 167, 284-291.                                         | 4.7 | 120       |
| 23 | Faces of a Changing Climate: Semi-Quantitative Multi-Mycotoxin Analysis of Grain Grown in Exceptional Climatic Conditions in Norway. Toxins, 2013, 5, 1682-1697.                                                                      | 3.4 | 119       |
| 24 | Development of Qualitative and Semiquantitative Immunoassay-Based Rapid Strip Tests for the<br>Detection of T-2 Toxin in Wheat and Oat. Journal of Agricultural and Food Chemistry, 2008, 56,<br>2589-2594.                           | 5.2 | 118       |
| 25 | Stable isotope dilution assay for the accurate determination of mycotoxins in maize by UHPLC-MS/MS.<br>Analytical and Bioanalytical Chemistry, 2012, 402, 2675-2686.                                                                  | 3.7 | 112       |
| 26 | Difficulties in fumonisin determination: the issue of hidden fumonisins. Analytical and Bioanalytical Chemistry, 2009, 395, 1335-1345.                                                                                                | 3.7 | 107       |
| 27 | Fusaric acid contributes to virulence of <i>Fusarium oxysporum</i> on plant and mammalian hosts.<br>Molecular Plant Pathology, 2018, 19, 440-453.                                                                                     | 4.2 | 105       |
| 28 | Bio-monitoring of mycotoxin exposure in Cameroon using a urinary multi-biomarker approach. Food and Chemical Toxicology, 2013, 62, 927-934.                                                                                           | 3.6 | 102       |
| 29 | Ultra-sensitive, stable isotope assisted quantification of multiple urinary mycotoxin exposure<br>biomarkers. Analytica Chimica Acta, 2018, 1019, 84-92.                                                                              | 5.4 | 101       |
| 30 | Two dimensional separation schemes for investigation of the interaction of an anticancer<br>ruthenium(iii) compound with plasma proteins. Journal of Analytical Atomic Spectrometry, 2005, 20,<br>856.                                | 3.0 | 99        |
| 31 | Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plantArabidopsis thaliana. Food Additives and Contaminants, 2006, 23, 1194-1200. | 2.0 | 98        |
| 32 | On the interâ€instrument and interâ€laboratory transferability of a tandem mass spectral reference<br>library: 1. Results of an Austrian multicenter study. Journal of Mass Spectrometry, 2009, 44, 485-493.                          | 1.6 | 96        |
| 33 | Natural mycotoxin contamination of maize (Zea mays L.) in the South region of Brazil. Food Control, 2017, 73, 127-132.                                                                                                                | 5.5 | 96        |
| 34 | Occurrence of multiple mycotoxins and other fungal metabolites in animal feed and maize samples<br>from Egypt using LCâ€MS/MS. Journal of the Science of Food and Agriculture, 2017, 97, 4419-4428.                                   | 3.5 | 94        |
| 35 | On the interâ€instrument and the interâ€laboratory transferability of a tandem mass spectral reference<br>library: 2. Optimization and characterization of the search algorithm. Journal of Mass Spectrometry,<br>2009, 44, 494-502.  | 1.6 | 90        |
| 36 | Application of a liquid chromatography–tandem mass spectrometric method to multi-mycotoxin determination in raw cereals and evaluation of matrix effects. Food Additives and Contaminants, 2007, 24, 1184-1195.                       | 2.0 | 88        |

| #  | Article                                                                                                                                                                                                                                                                                                                                 | IF           | CITATIONS      |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|
| 37 | LC-MS/MS-based multibiomarker approaches for the assessment of human exposure to mycotoxins.<br>Analytical and Bioanalytical Chemistry, 2013, 405, 5687-5695.                                                                                                                                                                           | 3.7          | 88             |
| 38 | Evaluation of Matrix Effects and Extraction Efficiencies of LC–MS/MS Methods as the Essential Part<br>for Proper Validation of Multiclass Contaminants in Complex Feed. Journal of Agricultural and Food<br>Chemistry, 2020, 68, 3868-3880.                                                                                             | 5.2          | 86             |
| 39 | Retention pattern profiling of fungal metabolites on mixed-mode reversed-phase/weak anion exchange<br>stationary phases in comparison to reversed-phase and weak anion exchange separation materials by<br>liquid chromatography–electrospray ionisation-tandem mass spectrometry. Journal of<br>Chromatography A. 2008. 1191. 171-181. | 3.7          | 85             |
| 40 | Fungal and bacterial metabolites of stored maize (Zea mays, L.) from five agro-ecological zones of Nigeria. Mycotoxin Research, 2014, 30, 89-102.                                                                                                                                                                                       | 2.3          | 85             |
| 41 | A rapid optical immunoassay for the screening of T-2 and HT-2 toxin in cereals and maize-based baby food. Talanta, 2010, 81, 630-636.                                                                                                                                                                                                   | 5.5          | 81             |
| 42 | Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. BMC Microbiology, 2015, 15, 2.                                                                                                                        | 3.3          | 79             |
| 43 | Mycotoxin risk assessment for consumers of groundnut in domestic markets in Nigeria. International<br>Journal of Food Microbiology, 2017, 251, 24-32.                                                                                                                                                                                   | 4.7          | 78             |
| 44 | Toxigenicity and pathogenicity of Fusarium poae and Fusarium avenaceum on wheat. European Journal of Plant Pathology, 2008, 122, 265-276.                                                                                                                                                                                               | 1.7          | 76             |
| 45 | Natural occurrence of mycotoxins in peanut cake from Nigeria. Food Control, 2012, 27, 338-342.                                                                                                                                                                                                                                          | 5.5          | 75             |
| 46 | Multimycotoxin analysis of sorghum (Sorghum bicolor L. Moench) and finger millet (Eleusine) Tj ETQq0 0 0 rg                                                                                                                                                                                                                             | BT /Overlock | 2 10 Tf 50 382 |
| 47 | Investigation of the Hepatic Glucuronidation Pattern of the Fusarium Mycotoxin Deoxynivalenol in Various Species. Chemical Research in Toxicology, 2012, 25, 2715-2717.                                                                                                                                                                 | 3.3          | 73             |
| 48 | Incidence and consumer awareness of toxigenic Aspergillus section Flavi and aflatoxin B1 in peanut cake from Nigeria. Food Control, 2013, 30, 596-601.                                                                                                                                                                                  | 5.5          | 72             |
| 49 | Assessing the mycotoxicological risk from consumption of complementary foods by infants and young children in Nigeria. Food and Chemical Toxicology, 2018, 121, 37-50.                                                                                                                                                                  | 3.6          | 72             |
| 50 | Urinary analysis reveals high deoxynivalenol exposure in pregnant women from Croatia. Food and Chemical Toxicology, 2013, 62, 231-237.                                                                                                                                                                                                  | 3.6          | 71             |
| 51 | The Microbiome and Metabolites in Fermented Pu-erh Tea as Revealed by High-Throughput Sequencing and Quantitative Multiplex Metabolite Analysis. PLoS ONE, 2016, 11, e0157847.                                                                                                                                                          | 2.5          | 67             |
| 52 | Heterochromatin influences the secondary metabolite profile in the plant pathogen Fusarium graminearum. Fungal Genetics and Biology, 2012, 49, 39-47.                                                                                                                                                                                   | 2.1          | 66             |
| 53 | Bacterial Diversity and Mycotoxin Reduction During Maize Fermentation (Steeping) for Ogi<br>Production. Frontiers in Microbiology, 2015, 6, 1402.                                                                                                                                                                                       | 3.5          | 65             |
| 54 | Evaluation of Microbiological and Chemical Contaminants in Poultry Farms. International Journal of Environmental Research and Public Health, 2016, 13, 192.                                                                                                                                                                             | 2.6          | 64             |

| #  | Article                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Mycotoxins in corn and wheat silage in Israel. Food Additives and Contaminants - Part A Chemistry,<br>Analysis, Control, Exposure and Risk Assessment, 2013, 30, 1614-1625.                                                                                                                     | 2.3 | 63        |
| 56 | Mycotoxins in maize harvested in Republic of Serbia in the period 2012–2015. Part 1: Regulated mycotoxins and its derivatives. Food Chemistry, 2020, 312, 126034.                                                                                                                               | 8.2 | 61        |
| 57 | Effect of fungal strain and cereal substrate on <b><i>in vitro</i></b> mycotoxin production<br>by <b><i>Fusarium poae</i></b> and <b><i>Fusarium avenaceum</i></b> . Food Additives and<br>Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2008, 25, 745-757. | 2.3 | 59        |
| 58 | Co-occurrence of toxic bacterial and fungal secondary metabolites in moisture-damaged indoor environments. Indoor Air, 2011, 21, 368-375.                                                                                                                                                       | 4.3 | 59        |
| 59 | Non-synergistic cytotoxic effects of Fusarium and Alternaria toxin combinations in Caco-2 cells.<br>Toxicology Letters, 2016, 241, 1-8.                                                                                                                                                         | 0.8 | 59        |
| 60 | Direct quantification of deoxynivalenol glucuronide in human urine as biomarker of exposure to the<br>Fusarium mycotoxin deoxynivalenol. Analytical and Bioanalytical Chemistry, 2011, 401, 195-200.                                                                                            | 3.7 | 57        |
| 61 | Interactions between ABCâ€transport proteins and the secondary <i>Fusarium</i> metabolites enniatin and Food Research, 2009, 53, 904-920.                                                                                                                                                       | 3.3 | 55        |
| 62 | Masked mycotoxins: does breeding for enhanced Fusarium head blight resistance result in more deoxynivalenol-3-glucoside in new wheat varieties?. World Mycotoxin Journal, 2016, 9, 741-754.                                                                                                     | 1.4 | 55        |
| 63 | Mycotoxin Occurrence in Maize Silage—A Neglected Risk for Bovine Gut Health?. Toxins, 2019, 11, 577.                                                                                                                                                                                            | 3.4 | 55        |
| 64 | Fusarium Damage in Small Cereal Grains from Western Canada. 2. Occurrence of Fusarium Toxins and<br>Their Source Organisms in Durum Wheat Harvested in 2010. Journal of Agricultural and Food<br>Chemistry, 2013, 61, 5438-5448.                                                                | 5.2 | 54        |
| 65 | Mycotoxin co-exposures in infants and young children consuming household- and<br>industrially-processed complementary foods in Nigeria and risk management advice. Food Control,<br>2019, 98, 312-322.                                                                                          | 5.5 | 53        |
| 66 | Utilising an LC-MS/MS-based multi-biomarker approach to assess mycotoxin exposure in the Bangkok<br>metropolitan area and surrounding provinces. Food Additives and Contaminants - Part A Chemistry,<br>Analysis, Control, Exposure and Risk Assessment, 2014, 31, 2040-2046.                   | 2.3 | 52        |
| 67 | In vitro glucuronidation kinetics of deoxynivalenol by human and animal microsomes and recombinant human UGT enzymes. Archives of Toxicology, 2015, 89, 949-960.                                                                                                                                | 4.2 | 52        |
| 68 | Mouse tissue distribution and persistence of the food-born fusariotoxins Enniatin B and Beauvericin.<br>Toxicology Letters, 2016, 247, 35-44.                                                                                                                                                   | 0.8 | 51        |
| 69 | From malt to wheat beer: A comprehensive multi-toxin screening, transfer assessment and its influence on basic fermentation parameters. Food Chemistry, 2018, 254, 115-121.                                                                                                                     | 8.2 | 51        |
| 70 | A CRE1- regulated cluster is responsible for light dependent production of dihydrotrichotetronin in<br>Trichoderma reesei. PLoS ONE, 2017, 12, e0182530.                                                                                                                                        | 2.5 | 51        |
| 71 | Production of fumonisins B2 and B4 in Tolypocladium species. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1329-1335.                                                                                                                                                         | 3.0 | 50        |
| 72 | Uncommon occurrence ratios of aflatoxin B1, B2, G1, and G2 in maize and groundnuts from Malawi.<br>Mycotoxin Research, 2015, 31, 57-62.                                                                                                                                                         | 2.3 | 50        |

| #  | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Emerging Fusarium Mycotoxins Fusaproliferin, Beauvericin, Enniatins, and Moniliformin in Serbian<br>Maize. Toxins, 2019, 11, 357.                                                                                                                                                | 3.4  | 50        |
| 74 | Investigation of the storage stability of selected volatile sulfur compounds in different sampling containers. Journal of Chromatography A, 2001, 917, 367-374.                                                                                                                  | 3.7  | 49        |
| 75 | Spatial variability of fusarium head blight pathogens and associated mycotoxins in wheat crops. Plant<br>Pathology, 2010, 59, 671-682.                                                                                                                                           | 2.4  | 49        |
| 76 | Mycotoxins in poultry feed and feed ingredients in Nigeria. Mycotoxin Research, 2019, 35, 149-155.                                                                                                                                                                               | 2.3  | 49        |
| 77 | Microbial secondary metabolites in school buildings inspected for moisture damage in Finland, The<br>Netherlands and Spain. Journal of Environmental Monitoring, 2012, 14, 2044.                                                                                                 | 2.1  | 48        |
| 78 | Comparison of Fusarium graminearum Transcriptomes on Living or Dead Wheat Differentiates<br>Substrate-Responsive and Defense-Responsive Genes. Frontiers in Microbiology, 2016, 7, 1113.                                                                                         | 3.5  | 48        |
| 79 | Mycological Analysis and Multimycotoxins in Maize from Rural Subsistence Farmers in the Former<br>Transkei, South Africa. Journal of Agricultural and Food Chemistry, 2013, 61, 8232-8240.                                                                                       | 5.2  | 47        |
| 80 | Quantitation of multiple mycotoxins and cyanogenic glucosides in cassava samples from Tanzania and<br>Rwanda by an LC-MS/MS-based multi-toxin method. Food Additives and Contaminants - Part A Chemistry,<br>Analysis, Control, Exposure and Risk Assessment, 2015, 32, 488-502. | 2.3  | 47        |
| 81 | Can plant phenolic compounds reduce <i>Fusarium</i> growth and mycotoxin production in cereals?.<br>Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment,<br>2018, 35, 2455-2470.                                                 | 2.3  | 47        |
| 82 | Microbiological safety of readyâ€ŧoâ€eat foods in low―and middleâ€income countries: A comprehensive<br>10â€year (2009 to 2018) review. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 703-732.                                                                 | 11.7 | 47        |
| 83 | Fate of mycotoxins in two popular traditional cereal-based beverages (kunu-zaki and pito) from rural<br>Nigeria. LWT - Food Science and Technology, 2015, 60, 137-141.                                                                                                           | 5.2  | 46        |
| 84 | Presence of Multiple Mycotoxins and Other Fungal Metabolites in Native Grasses from a Wetland Ecosystem in Argentina Intended for Grazing Cattle. Toxins, 2015, 7, 3309-3329.                                                                                                    | 3.4  | 45        |
| 85 | Causal agents of Fusarium head blight of durum wheat (TriticumÂdurum Desf.) in central Italy and<br>their inÂvitro biosynthesis of secondary metabolites. Food Microbiology, 2018, 70, 17-27.                                                                                    | 4.2  | 45        |
| 86 | High-Throughput Sequence Analyses of Bacterial Communities and Multi-Mycotoxin Profiling During<br>Processing of Different Formulations of Kunu, a Traditional Fermented Beverage. Frontiers in<br>Microbiology, 2018, 9, 3282.                                                  | 3.5  | 45        |
| 87 | Fungal and bacterial metabolites in commercial poultry feed from Nigeria. Food Additives and<br>Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1288-1299.                                                                           | 2.3  | 43        |
| 88 | Small Chemical Chromatin Effectors Alter Secondary Metabolite Production in Aspergillus clavatus.<br>Toxins, 2013, 5, 1723-1741.                                                                                                                                                 | 3.4  | 43        |
| 89 | <scp>K</scp> dm <scp>A</scp> , a histone <scp>H</scp> 3 demethylase with bipartite function,<br>differentially regulates primary and secondary metabolism in <scp><i>A</i></scp> <i>spergillus<br/>nidulans</i> . Molecular Microbiology, 2015, 96, 839-860.                     | 2.5  | 43        |
| 90 | Traditionally Processed Beverages in Africa: A Review of the Mycotoxin Occurrence Patterns and<br>Exposure Assessment. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 334-351.                                                                                 | 11.7 | 43        |

| #   | Article                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | YPR2 is a regulator of light modulated carbon and secondary metabolism in Trichoderma reesei. BMC<br>Genomics, 2019, 20, 211.                                                                                                                                                     | 2.8  | 43        |
| 92  | Biological Control of Aflatoxin in Maize Grown in Serbia. Toxins, 2020, 12, 162.                                                                                                                                                                                                  | 3.4  | 43        |
| 93  | Fusarium fungi and associated metabolites presence on grapes from Slovakia. Mycotoxin Research, 2013, 29, 97-102.                                                                                                                                                                 | 2.3  | 42        |
| 94  | Lack of the COMPASS Component Ccl1 Reduces H3K4 Trimethylation Levels and Affects Transcription of Secondary Metabolite Genes in Two Plant–Pathogenic Fusarium Species. Frontiers in Microbiology, 2016, 07, 2144.                                                                | 3.5  | 42        |
| 95  | Regional Sub-Saharan Africa Total Diet Study in Benin, Cameroon, Mali and Nigeria Reveals the<br>Presence of 164 Mycotoxins and Other Secondary Metabolites in Foods. Toxins, 2019, 11, 54.                                                                                       | 3.4  | 42        |
| 96  | Relationship between environmental factors, dry matter loss and mycotoxin levels in stored wheat<br>and maize infected with <i>Fusarium</i> species. Food Additives and Contaminants - Part A Chemistry,<br>Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1118-1128. | 2.3  | 41        |
| 97  | Role of the European corn borer ( <i>Ostrinia nubilalis</i> ) on contamination of maize with<br>13 <i>Fusarium</i> mycotoxins. Food Additives and Contaminants - Part A Chemistry, Analysis, Control,<br>Exposure and Risk Assessment, 2015, 32, 533-543.                         | 2.3  | 41        |
| 98  | Temperature Exerts Control of Bacillus cereus Emetic Toxin Production on Post-transcriptional<br>Levels. Frontiers in Microbiology, 2016, 7, 1640.                                                                                                                                | 3.5  | 41        |
| 99  | Stability and epimerisation behaviour of ergot alkaloids in various solvents. World Mycotoxin<br>Journal, 2008, 1, 67-78.                                                                                                                                                         | 1.4  | 40        |
| 100 | Genotyping and phenotyping of Fusarium graminearum isolates from Germany related to their mycotoxin biosynthesis. International Journal of Food Microbiology, 2011, 151, 78-86.                                                                                                   | 4.7  | 40        |
| 101 | Mycotoxin patterns in ear rot infected maize: A comprehensive case study in Nigeria. Food Control, 2017, 73, 1159-1168.                                                                                                                                                           | 5.5  | 40        |
| 102 | Indoor microbiota in severely moisture damaged homes and the impact of interventions. Microbiome, 2017, 5, 138.                                                                                                                                                                   | 11.1 | 40        |
| 103 | Multimycotoxin and fungal analysis of maize grains from south and southwestern Ethiopia. Food<br>Additives and Contaminants: Part B Surveillance, 2018, 11, 64-74.                                                                                                                | 2.8  | 40        |
| 104 | SUB1 has photoreceptor dependent and independent functions in sexual development and secondary metabolism in <i>Trichoderma reesei</i> . Molecular Microbiology, 2017, 106, 742-759.                                                                                              | 2.5  | 39        |
| 105 | Fungal and mycotoxin assessment of dried edible mushroom in Nigeria. International Journal of Food<br>Microbiology, 2013, 162, 231-236.                                                                                                                                           | 4.7  | 38        |
| 106 | A novel chemometric classification for FTIR spectra of mycotoxin-contaminated maize and peanuts at<br>regulatory limits. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure<br>and Risk Assessment, 2016, 33, 1596-1607.                             | 2.3  | 38        |
| 107 | Uncommon toxic microbial metabolite patterns in traditionally home-processed maize dish ( fufu )<br>consumed in rural Cameroon. Food and Chemical Toxicology, 2017, 107, 10-19.                                                                                                   | 3.6  | 38        |
| 108 | Set1 and Kdm5 are antagonists for H3K4 methylation and regulators of the major conidiationâ€specific transcription factor gene <i>ABA1</i> in <i>Fusarium fujikuroi</i> . Environmental Microbiology, 2018, 20, 3343-3362.                                                        | 3.8  | 38        |

| #   | Article                                                                                                                                                                                                                    | IF                | CITATIONS           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 109 | Multiple Fungal Metabolites Including Mycotoxins in Naturally Infected and Fusarium-Inoculated<br>Wheat Samples. Microorganisms, 2020, 8, 578.                                                                             | 3.6               | 38                  |
| 110 | Synthesis of deoxynivalenol-3-ß-D-O-glucuronide for its use as biomarker for dietary deoxynivalenol<br>exposure. World Mycotoxin Journal, 2012, 5, 127-132.                                                                | 1.4               | 37                  |
| 111 | Cooccurrence of Mycotoxins in Maize and Poultry Feeds from Brazil by Liquid<br>Chromatography/Tandem Mass Spectrometry. Scientific World Journal, The, 2013, 2013, 1-9.                                                    | 2.1               | 37                  |
| 112 | Mycotoxin Contamination in Sugarcane Grass and Juice: First Report on Detection of Multiple<br>Mycotoxins and Exposure Assessment for Aflatoxins B1 and G1 in Humans. Toxins, 2016, 8, 343.                                | 3.4               | 37                  |
| 113 | Occurrence of Ochratoxins, Fumonisin B <sub>2</sub> , Aflatoxins (B <sub>1</sub> and) Tj ETQq1 1 0.784314 rg<br>Miniâ€Survey. Journal of Food Science, 2018, 83, 559-564.                                                  | BT /Overlo<br>3.1 | ock 10 Tf 50.<br>37 |
| 114 | Can Polish wheat (Triticum polonicum L.) be an interesting gene source for breeding wheat cultivars<br>with increased resistance to Fusarium head blight?. Genetic Resources and Crop Evolution, 2013, 60,<br>2359-2373.   | 1.6               | 36                  |
| 115 | Fungal metabolites diversity in maize and associated human dietary exposures relate to micro-climatic patterns in Malawi. World Mycotoxin Journal, 2015, 8, 269-282.                                                       | 1.4               | 36                  |
| 116 | Dual effectiveness of Alternaria but not Fusarium mycotoxins against human topoisomerase II and bacterial gyrase. Archives of Toxicology, 2017, 91, 2007-2016.                                                             | 4.2               | 36                  |
| 117 | Traditional processing impacts mycotoxin levels and nutritional value of ogi – A maize-based complementary food. Food Control, 2018, 86, 224-233.                                                                          | 5.5               | 36                  |
| 118 | Challenges and future directions in LC-MS-based multiclass method development for the quantification of food contaminants. Analytical and Bioanalytical Chemistry, 2021, 413, 25-34.                                       | 3.7               | 36                  |
| 119 | Multi-microbial metabolites in fonio millet (acha) and sesame seeds in Plateau State, Nigeria. European<br>Food Research and Technology, 2012, 235, 285-293.                                                               | 3.3               | 35                  |
| 120 | Effect of wheat infection timing on Fusarium head blight causal agents and secondary metabolites in grain. International Journal of Food Microbiology, 2019, 290, 214-225.                                                 | 4.7               | 35                  |
| 121 | Mycotoxins in maize harvested in Serbia in the period 2012–2015. Part 2: Non-regulated mycotoxins and other fungal metabolites. Food Chemistry, 2020, 317, 126409.                                                         | 8.2               | 35                  |
| 122 | Realizing the simultaneous liquid chromatography-tandem mass spectrometry based quantification of<br>>1200 biotoxins, pesticides and veterinary drugs in complex feed. Journal of Chromatography A,<br>2020, 1629, 461502. | 3.7               | 35                  |
| 123 | Safe food and feed through an integrated toolbox for mycotoxin management: the MyToolBox approach. World Mycotoxin Journal, 2016, 9, 487-495.                                                                              | 1.4               | 34                  |
| 124 | Rapid Surface Plasmon Resonance Immunoassay for the Determination of Deoxynivalenol in Wheat,<br>Wheat Products, and Maize-Based Baby Food. Journal of Agricultural and Food Chemistry, 2010, 58,<br>8936-8941.            | 5.2               | 33                  |
| 125 | Deoxynivalenol & Deoxynivalenol-3-Glucoside Mitigation through Bakery Production Strategies:<br>Effective Experimental Design within Industrial Rusk-Making Technology. Toxins, 2015, 7, 2773-2790.                        | 3.4               | 33                  |
| 126 | Fungal community, Fusarium head blight complex and secondary metabolites associated with malting<br>barley grains harvested in Umbria, central Italy. International Journal of Food Microbiology, 2018, 273,<br>33-42.     | 4.7               | 33                  |

| #   | Article                                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Raised concerns about the safety of barley grains and straw: A Swiss survey reveals a high diversity of mycotoxins and other fungal metabolites. Food Control, 2021, 125, 107919.                                                                                                                                | 5.5 | 33        |
| 128 | Evaluation of LC-high-resolution FT-Orbitrap MS for the quantification of selected mycotoxins and the simultaneous screening of fungal metabolites in food. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2011, 28, 1457-1468.                            | 2.3 | 32        |
| 129 | Portable Infrared Laser Spectroscopy for On-site Mycotoxin Analysis. Scientific Reports, 2017, 7, 44028.                                                                                                                                                                                                         | 3.3 | 32        |
| 130 | Mycotoxins and fungal metabolites in groundnut- and maize-based snacks from Nigeria. Food Additives and Contaminants: Part B Surveillance, 2013, 6, 294-300.                                                                                                                                                     | 2.8 | 31        |
| 131 | Effect of fungicide application to control Fusarium head blight and 20 Fusarium and Alternaria mycotoxins in winter wheat (Triticum aestivum L.). World Mycotoxin Journal, 2015, 8, 499-510.                                                                                                                     | 1.4 | 31        |
| 132 | Fungal and bacterial metabolites associated with natural contamination of locally processed rice<br>( <i>Oryza sativa</i> L.) in Nigeria. Food Additives and Contaminants - Part A Chemistry, Analysis,<br>Control, Exposure and Risk Assessment, 2015, 32, 950-959.                                             | 2.3 | 31        |
| 133 | Microbial secondary metabolites in homes in association with moisture damage and asthma. Indoor<br>Air, 2016, 26, 448-456.                                                                                                                                                                                       | 4.3 | 31        |
| 134 | Mycotoxins in uncooked and plate-ready household food from rural northern Nigeria. Food and<br>Chemical Toxicology, 2019, 128, 171-179.                                                                                                                                                                          | 3.6 | 31        |
| 135 | Optimization, In-House Validation, and Application of a Liquid Chromatography–Tandem Mass<br>Spectrometry (LC–MS/MS)-Based Method for the Quantification of Selected Polyphenolic Compounds<br>in Leaves of Grapevine (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 2011, 59,<br>10787-10794. | 5.2 | 30        |
| 136 | Formulation and processing factors affecting trichothecene mycotoxins within industrial biscuit-making. Food Chemistry, 2017, 229, 597-603.                                                                                                                                                                      | 8.2 | 30        |
| 137 | Variation of Fusarium Free, Masked, and Emerging Mycotoxin Metabolites in Maize from Agriculture<br>Regions of South Africa. Toxins, 2020, 12, 149.                                                                                                                                                              | 3.4 | 30        |
| 138 | The potential of flow-through microdialysis for probing low-molecular weight organic anions in rhizosphere soil solution. Analytica Chimica Acta, 2005, 546, 1-10.                                                                                                                                               | 5.4 | 29        |
| 139 | Mycotoxigenic fungi and mycotoxins associated with stored maize from different regions of Lesotho.<br>Mycotoxin Research, 2013, 29, 209-219.                                                                                                                                                                     | 2.3 | 29        |
| 140 | The contribution of lot-to-lot variation to the measurement uncertainty of an LC-MS-based multi-mycotoxin assay. Analytical and Bioanalytical Chemistry, 2018, 410, 4409-4418.                                                                                                                                   | 3.7 | 28        |
| 141 | Evaluation of Emerging Fusarium mycotoxins beauvericin, Enniatins, Fusaproliferin and Moniliformin in Domestic Rice in Iran. Iranian Journal of Pharmaceutical Research, 2015, 14, 505-12.                                                                                                                       | 0.5 | 28        |
| 142 | Glucuronidation of piceatannol by human liver microsomes: major role of UGT1A1, UGT1A8 and UGT1A10. Journal of Pharmacy and Pharmacology, 2010, 62, 47-54.                                                                                                                                                       | 2.4 | 27        |
| 143 | Effects of Wheat Naturally Contaminated with Fusarium Mycotoxins on Growth Performance and<br>Selected Health Indices of Red Tilapia (Oreochromis niloticus × O. mossambicus). Toxins, 2015, 7,<br>1929-1944.                                                                                                    | 3.4 | 27        |
| 144 | Detection of 3-nitropropionic acid and cytotoxicity inMucor circinelloides. Mycotoxin Research, 2008, 24, 140-150.                                                                                                                                                                                               | 2.3 | 26        |

| #   | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Mycotoxins and other fungal metabolites in grain dust from Norwegian grain elevators and compound feed mills. World Mycotoxin Journal, 2015, 8, 361-373.                                                                                          | 1.4  | 26        |
| 146 | The secondary Fusarium metabolite aurofusarin induces oxidative stress, cytotoxicity and genotoxicity in human colon cells. Toxicology Letters, 2018, 284, 170-183.                                                                               | 0.8  | 26        |
| 147 | Observation of sorptive losses of volatile sulfur compounds during natural gas sampling. Journal of Chromatography A, 2002, 946, 301-305.                                                                                                         | 3.7  | 25        |
| 148 | Penicillium strains isolated from Slovak grape berries taxonomy assessment by secondary metabolite profile. Mycotoxin Research, 2014, 30, 213-220.                                                                                                | 2.3  | 25        |
| 149 | A survey of mycotoxins in domestic rice in Iran by liquid chromatography tandem mass spectrometry.<br>Toxicology Mechanisms and Methods, 2014, 24, 37-41.                                                                                         | 2.7  | 25        |
| 150 | Effect of agronomic programmes with different susceptibility to deoxynivalenol risk on emerging contamination in winter wheat. European Journal of Agronomy, 2017, 85, 12-24.                                                                     | 4.1  | 25        |
| 151 | Fullerol C60(OH)24 nanoparticles modulate aflatoxin B1 biosynthesis in Aspergillus flavus. Scientific<br>Reports, 2018, 8, 12855.                                                                                                                 | 3.3  | 25        |
| 152 | Interacting Environmental Stress Factors Affects Targeted Metabolomic Profiles in Stored Natural<br>Wheat and That Inoculated with F. graminearum. Toxins, 2018, 10, 56.                                                                          | 3.4  | 25        |
| 153 | Dietary Risk Assessment and Consumer Awareness of Mycotoxins among Household Consumers of Cereals, Nuts and Legumes in North-Central Nigeria. Toxins, 2021, 13, 635.                                                                              | 3.4  | 24        |
| 154 | Mycotoxin exposure biomonitoring in breastfed and non-exclusively breastfed Nigerian children.<br>Environment International, 2022, 158, 106996.                                                                                                   | 10.0 | 24        |
| 155 | Mycotoxin profiles in the grain of <i>Triticum monococcum</i> , <i>Triticum dicoccum</i> and<br><i>Triticum spelta</i> after head infection with <i>Fusarium culmorum</i> . Journal of the Science of<br>Food and Agriculture, 2010, 90, 556-565. | 3.5  | 23        |
| 156 | Bacterial species and mycotoxin contamination associated with locust bean, melon and their<br>fermented products in south-western Nigeria. International Journal of Food Microbiology, 2017, 258,<br>73-80.                                       | 4.7  | 23        |
| 157 | Current challenges in the diagnosis of zearalenone toxicosis as illustrated by a field case of hyperestrogenism in suckling piglets. Porcine Health Management, 2018, 4, 18.                                                                      | 2.6  | 23        |
| 158 | Evidence of a Demethylase-Independent Role for the H3K4-Specific Histone Demethylases in Aspergillus<br>nidulans and Fusarium graminearum Secondary Metabolism. Frontiers in Microbiology, 2019, 10, 1759.                                        | 3.5  | 23        |
| 159 | Diffusion of mycotoxins and secondary metabolites in dry-cured meat products. Food Control, 2019, 101, 144-150.                                                                                                                                   | 5.5  | 23        |
| 160 | Untargeted LC–MS based 13C labelling provides a full mass balance of deoxynivalenol and its<br>degradation products formed during baking of crackers, biscuits and bread. Food Chemistry, 2019, 279,<br>303-311.                                  | 8.2  | 23        |
| 161 | On-line fast column switching SEC × IC separation combined with ICP-MS detection for mapping<br>metallodrug–biomolecule interaction. Journal of Analytical Atomic Spectrometry, 2010, 25, 861.                                                    | 3.0  | 22        |
| 162 | Evaluation of settled floor dust for the presence of microbial metabolites and volatile<br>anthropogenic chemicals in indoor environments by LC–MS/MS and GC–MS methods. Talanta, 2011, 85,<br>2027-2038.                                         | 5.5  | 22        |

| #   | Article                                                                                                                                                                                                                                                   | lF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Efficacy of gaseous ozone treatment on spore germination, growth and fumonisin production by<br>Fusarium verticillioides inÂvitro and in situ in maize. Journal of Stored Products Research, 2014, 59,<br>178-184.                                        | 2.6  | 22        |
| 164 | Mould and mycotoxin exposure assessment of melon and bush mango seeds, two common soup thickeners consumed in Nigeria. International Journal of Food Microbiology, 2016, 237, 83-91.                                                                      | 4.7  | 22        |
| 165 | Fungal secondary metabolite analysis applied to Cultural Heritage: the case of a contaminated library<br>in Venice. World Mycotoxin Journal, 2016, 9, 397-407.                                                                                            | 1.4  | 22        |
| 166 | Omics Analyses of Trichoderma reesei CBS999.97 and QM6a Indicate the Relevance of Female Fertility to<br>Carbohydrate-Active Enzyme and Transporter Levels. Applied and Environmental Microbiology, 2017, 83,                                             | 3.1  | 22        |
| 167 | The Natural Fungal Metabolite Beauvericin Exerts Anticancer Activity In Vivo: A Pre-Clinical Pilot<br>Study. Toxins, 2017, 9, 258.                                                                                                                        | 3.4  | 22        |
| 168 | Fungal Diversity and Mycotoxins in Low Moisture Content Ready-To-Eat Foods in Nigeria. Frontiers in Microbiology, 2020, 11, 615.                                                                                                                          | 3.5  | 22        |
| 169 | Mycotoxin-mixture assessment in mother-infant pairs in Nigeria: From mothers' meal to infants' urine.<br>Chemosphere, 2022, 287, 132226.                                                                                                                  | 8.2  | 22        |
| 170 | Comparison of single and multi-analyte methods based on LC-MS/MS for mycotoxin biomarker determination in human urine. World Mycotoxin Journal, 2013, 6, 355-366.                                                                                         | 1.4  | 21        |
| 171 | Occurrence of Regulated Mycotoxins and Other Microbial Metabolites in Dried Cassava Products from Nigeria. Toxins, 2017, 9, 207.                                                                                                                          | 3.4  | 21        |
| 172 | Fusarium graminearum in Stored Wheat: Use of CO2 Production to Quantify Dry Matter Losses and<br>Relate This to Relative Risks of Zearalenone Contamination under Interacting Environmental<br>Conditions. Toxins, 2018, 10, 86.                          | 3.4  | 21        |
| 173 | Moulds and their secondary metabolites associated with the fermentation and storage of two cocoa<br>bean hybrids in Nigeria. International Journal of Food Microbiology, 2020, 316, 108490.                                                               | 4.7  | 21        |
| 174 | Chitosan Hydrochloride Decreases Fusarium graminearum Growth and Virulence and Boosts Growth,<br>Development and Systemic Acquired Resistance in Two Durum Wheat Genotypes. Molecules, 2020, 25,<br>4752.                                                 | 3.8  | 21        |
| 175 | First Report of the Production of Mycotoxins and Other Secondary Metabolites by Macrophomina phaseolina (Tassi) Goid. Isolates from Soybeans (Glycine max L.) Symptomatic with Charcoal Rot Disease. Journal of Fungi (Basel, Switzerland), 2020, 6, 332. | 3.5  | 21        |
| 176 | A mini-survey of moulds and mycotoxins in locally grown and imported wheat grains in Nigeria.<br>Mycotoxin Research, 2017, 33, 59-64.                                                                                                                     | 2.3  | 20        |
| 177 | Characterization of fungi in office dust: Comparing results of microbial secondary metabolites,<br>fungal internal transcribed spacer region sequencing, viable culture and other microbial indices.<br>Indoor Air, 2018, 28, 708-720.                    | 4.3  | 20        |
| 178 | Influence of Two Garlic-Derived Compounds, Propyl Propane Thiosulfonate (PTS) and Propyl Propane<br>Thiosulfinate (PTSO), on Growth and Mycotoxin Production by Fusarium Species In Vitro and in<br>Stored Cereals. Toxins, 2019, 11, 495.                | 3.4  | 20        |
| 179 | Distribution of mycotoxins produced by Penicillium spp. inoculated in apple jam and crème fraiche during chilled storage. International Journal of Food Microbiology, 2019, 292, 13-20.                                                                   | 4.7  | 20        |
| 180 | Versicolorin A, a precursor in aflatoxins biosynthesis, is a food contaminant toxic for human intestinal cells. Environment International, 2020, 137, 105568.                                                                                             | 10.0 | 20        |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Assessment of pre-harvest aflatoxin and fumonisin contamination of maize in Babati District, Tanzania.<br>African Journal of Food, Agriculture, Nutrition and Development, 2016, 16, 11039-11053.                      | 0.2 | 20        |
| 182 | Diversity and toxigenicity of fungi and description of Fusarium madaense sp. nov. from cereals,<br>legumes and soils in north-central Nigeria. MycoKeys, 2020, 67, 95-124.                                             | 1.9 | 20        |
| 183 | Impact of sowing time, hybrid and environmental conditions on the contamination of maize by emerging mycotoxins and fungal metabolites. Italian Journal of Agronomy, 0, , .                                            | 1.0 | 19        |
| 184 | Twenty-Eight Fungal Secondary Metabolites Detected in Pig Feed Samples: Their Occurrence, Relevance<br>and Cytotoxic Effects In Vitro. Toxins, 2019, 11, 537.                                                          | 3.4 | 19        |
| 185 | Cultivation Area Affects the Presence of Fungal Communities and Secondary Metabolites in Italian<br>Durum Wheat Grains. Toxins, 2020, 12, 97.                                                                          | 3.4 | 19        |
| 186 | Recent developments in the application of liquid chromatography–tandem mass spectrometry for the determination of organic residues and contaminants. Analytical and Bioanalytical Chemistry, 2008, 390, 253-256.       | 3.7 | 18        |
| 187 | In-vitro sulfation of piceatannol by human liver cytosol and recombinant sulfotransferases. Journal of Pharmacy and Pharmacology, 2010, 61, 185-191.                                                                   | 2.4 | 18        |
| 188 | Multimycotoxin LC-MS/MS analysis in pearl millet (Pennisetum glaucum) from Tunisia. Food Control, 2019, 106, 106738.                                                                                                   | 5.5 | 18        |
| 189 | Mycotoxins, Phytoestrogens and Other Secondary Metabolites in Austrian Pastures: Occurrences,<br>Contamination Levels and Implications of Geo-Climatic Factors. Toxins, 2021, 13, 460.                                 | 3.4 | 18        |
| 190 | Aflatoxins and fumonisin contamination of marketed maize, maize bran and maize used as animal feed<br>in Northern Tanzania. African Journal of Food, Agriculture, Nutrition and Development, 2016, 16,<br>11054-11065. | 0.2 | 18        |
| 191 | Combinatory effects of cereulide and deoxynivalenol on in vitro cell viability and inflammation of human Caco-2 cells. Archives of Toxicology, 2020, 94, 833-844.                                                      | 4.2 | 17        |
| 192 | Impact of fullerol C60(OH)24 nanoparticles on the production of emerging toxins by Aspergillus flavus. Scientific Reports, 2020, 10, 725.                                                                              | 3.3 | 17        |
| 193 | Fate of regulated, masked, emerging mycotoxins and secondary fungal metabolites during different<br>large-scale maize dry-milling processes. Food Research International, 2021, 140, 109861.                           | 6.2 | 17        |
| 194 | Tailoring the macroporous structure of monolithic silica-based capillary columns with potential for liquid chromatography. Journal of Chromatography A, 2007, 1144, 55-62.                                             | 3.7 | 16        |
| 195 | Sulfation of deoxynivalenol, its acetylated derivatives, and T2-toxin. Tetrahedron, 2014, 70, 5260-5266.                                                                                                               | 1.9 | 16        |
| 196 | Interactions between fungi of standard paint test method BS3900. International Biodeterioration and<br>Biodegradation, 2015, 104, 411-418.                                                                             | 3.9 | 16        |
| 197 | Identification of mycotoxins by UHPLC–QTOF MS in airborne fungi and fungi isolated from industrial paper and antique documents from the Archive of Bogotá. Environmental Research, 2016, 144, 130-138.                 | 7.5 | 16        |
| 198 | Assessment of the potential industrial applications of commercial dried cassava products in Nigeria.<br>Journal of Food Measurement and Characterization, 2017, 11, 598-609.                                           | 3.2 | 16        |

| #   | Article                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Fungal metabolite and mycotoxins profile of cashew nut from selected locations in two African<br>countries. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk<br>Assessment, 2019, 36, 1847-1859.                                     | 2.3  | 16        |
| 200 | Variation of Fungal Metabolites in Sorghum Malts Used to Prepare Namibian Traditional Fermented<br>Beverages Omalodu and Otombo. Toxins, 2019, 11, 165.                                                                                                                      | 3.4  | 16        |
| 201 | Evaluation of microbial toxins, trace elements and sensory properties of a highâ€theabrownins instant<br>Puâ€erh tea produced using <i>Aspergillus tubingensis</i> via submerged fermentation. International<br>Journal of Food Science and Technology, 2019, 54, 1541-1549. | 2.7  | 16        |
| 202 | Evaluation of zearalenone, α-zearalenol, β-zearalenol, zearalenone 4-sulfate and β-zearalenol 4-glucoside<br>levels during the ensiling process World Mycotoxin Journal, 2014, 7, 291-295.                                                                                   | 1.4  | 15        |
| 203 | Mycotoxin profile of Fusarium armeniacum isolated from natural grasses intended for cattle feed.<br>World Mycotoxin Journal, 2015, 8, 451-457.                                                                                                                               | 1.4  | 15        |
| 204 | Human dietary exposure to chemicals in sub-Saharan Africa: safety assessment through a total diet<br>study. Lancet Planetary Health, The, 2020, 4, e292-e300.                                                                                                                | 11.4 | 15        |
| 205 | Aspergillus, Penicillium and Cladosporium species associated with dried date fruits collected in the<br>Perugia (Umbria, Central Italy) market. International Journal of Food Microbiology, 2020, 322, 108585.                                                               | 4.7  | 15        |
| 206 | Fungi and their secondary metabolites in waterâ€damaged indoors after a major flood event in eastern<br>Croatia. Indoor Air, 2021, 31, 730-744.                                                                                                                              | 4.3  | 15        |
| 207 | Fungi and their metabolites in grain from individual households in Croatia. Food Additives and<br>Contaminants: Part B Surveillance, 2021, 14, 98-109.                                                                                                                       | 2.8  | 15        |
| 208 | Alternaria mycotoxins associated with grape berries in vitro and in situ. Biologia (Poland), 2014, 69, 173-177.                                                                                                                                                              | 1.5  | 14        |
| 209 | The development of a multiplex real-time PCR to quantify Fusarium DNA of trichothecene and fumonisin producing strains in maize. Analytical Methods, 2015, 7, 1358-1365.                                                                                                     | 2.7  | 14        |
| 210 | Trichothecene genotypes, chemotypes and zearalenone production by Fusarium graminearum species<br>complex strains causing Fusarium head blight in Argentina during an epidemic and non-epidemic<br>season. Tropical Plant Pathology, 2017, 42, 190-196.                      | 1.5  | 14        |
| 211 | Co-occurrence and toxicological relevance of secondary metabolites in dairy cow feed from<br>Thailand. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk<br>Assessment, 2021, 38, 1013-1027.                                          | 2.3  | 14        |
| 212 | Fungal species and mycotoxins in mouldy spots of grass and maize silages in Austria. Mycotoxin<br>Research, 2022, 38, 117-136.                                                                                                                                               | 2.3  | 14        |
| 213 | Single-kernel analysis of fumonisins and other fungal metabolites in maize from South African<br>subsistence farmers. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure<br>and Risk Assessment, 2011, 28, 1-11.                                | 2.3  | 13        |
| 214 | Mycotoxin testing: From Multi-toxin analysis to metabolomics. Mycotoxins, 2017, 67, 11-16.                                                                                                                                                                                   | 0.2  | 13        |
| 215 | Fumonisin occurrence in wheat-based products from Argentina. Food Additives and Contaminants:<br>Part B Surveillance, 2019, 12, 31-37.                                                                                                                                       | 2.8  | 13        |
| 216 | Carbon dioxide production as an indicator of Aspergillus flavus colonisation and<br>aflatoxins/cyclopiazonic acid contamination in shelled peanuts stored under different interacting<br>abiotic factors. Fungal Biology, 2020, 124, 1-7.                                    | 2.5  | 13        |

| #   | Article                                                                                                                                                                                                       | IF        | CITATIONS      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| 217 | Fullerol C60(OH)24 Nanoparticles Affect Secondary Metabolite Profile of Important Foodborne<br>Mycotoxigenic Fungi In Vitro. Toxins, 2020, 12, 213.                                                           | 3.4       | 13             |
| 218 | The H4K20 methyltransferase Kmt5 is involved in secondary metabolism and stress response in phytopathogenic Fusarium species. Fungal Genetics and Biology, 2021, 155, 103602.                                 | 2.1       | 13             |
| 219 | Toxinogenicity and cytotoxicity of Alternaria, Aspergillus and Penicillium moulds isolated from<br>working environments. International Journal of Environmental Science and Technology, 2017, 14,<br>595-608. | 3.5       | 12             |
| 220 | Microbiological Contamination at Workplaces in a Combined Heat and Power (CHP) Station<br>Processing Plant Biomass. International Journal of Environmental Research and Public Health, 2017,<br>14, 99.       | 2.6       | 12             |
| 221 | Fusarium culmorum multi-toxin screening in malting and brewing by-products. LWT - Food Science and Technology, 2018, 98, 642-645.                                                                             | 5.2       | 12             |
| 222 | Diversity and fate of fungal metabolites during the preparation of oshikundu, a Namibian traditional<br>fermented beverage. World Mycotoxin Journal, 2018, 11, 471-481.                                       | 1.4       | 12             |
| 223 | Fungi and mycotoxins in cowpea ( <i>Vigna unguiculata</i> L) on Nigerian markets. Food Additives and<br>Contaminants: Part B Surveillance, 2020, 13, 52-58.                                                   | 2.8       | 12             |
| 224 | A novel fungal gene regulation system based on inducible VPR-dCas9 and nucleosome map-guided sgRNA positioning. Applied Microbiology and Biotechnology, 2020, 104, 9801-9822.                                 | 3.6       | 12             |
| 225 | Metataxonomic analysis of bacterial communities and mycotoxin reduction during processing of three millet varieties into ogi, a fermented cereal beverage. Food Research International, 2021, 143, 110241.    | 6.2       | 12             |
| 226 | Microbiological and Toxicological Hazards in Sewage Treatment Plant Bioaerosol and Dust. Toxins, 2021, 13, 691.                                                                                               | 3.4       | 12             |
| 227 | Microbiological and toxicological hazard assessment in a waste sorting plant and proper respiratory protection. Journal of Environmental Management, 2022, 303, 114257.                                       | 7.8       | 12             |
| 228 | Fungal Species and Multi-Mycotoxin Associated with Post-Harvest Sorghum (Sorghum bicolor (L.)) Tj ETQq0 0 0                                                                                                   | rgBT_/Ove | rlock 10 Tf 50 |
| 229 | Experimental mould growth and mycotoxin diffusion in different food items. World Mycotoxin<br>Journal, 2017, 10, 153-161.                                                                                     | 1.4       | 11             |
| 230 | Aspergillus flavus NRRL 3251 Growth, Oxidative Status, and Aflatoxins Production Ability In Vitro under Different Illumination Regimes. Toxins, 2018, 10, 528.                                                | 3.4       | 11             |
| 231 | Profiles of fungal metabolites including regulated mycotoxins in individual dried Turkish figs by<br>LC-MS/MS. Mycotoxin Research, 2020, 36, 381-387.                                                         | 2.3       | 11             |
| 232 | Pilot study for the presence of fungal metabolites in sheep milk from first spring milking. Journal of<br>Veterinary Research (Poland), 2018, 62, 167-172.                                                    | 1.0       | 11             |
| 233 | Relationship between lutein and mycotoxin content in durum wheat. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 1-10.                        | 2.3       | 10             |
| 234 | Newly discovered ergot alkaloids in Sorghum ergot Claviceps africana occurring for the first time in<br>Israel. Food Chemistry, 2017, 219, 459-467.                                                           | 8.2       | 10             |

| #   | Article                                                                                                                                                                                                                                               | IF       | CITATIONS    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 235 | The effects of naturally occurring or purified deoxynivalenol (DON) on growth performance,<br>nutrient utilization and histopathology of rainbow trout (Oncorhynchus mykiss). Aquaculture, 2019,<br>505, 319-332.                                     | 3.5      | 10           |
| 236 | Distribution of fungi and their toxic metabolites in melon and sesame seeds marketed in two major producing states in Nigeria. Mycotoxin Research, 2020, 36, 361-369.                                                                                 | 2.3      | 10           |
| 237 | Fullerol C60(OH)24 Nanoparticles and Drought Impact on Wheat (Triticum aestivum L.) during<br>Growth and Infection with Aspergillus flavus. Journal of Fungi (Basel, Switzerland), 2021, 7, 236.                                                      | 3.5      | 10           |
| 238 | Efficacy of metabolites of a Streptomyces strain (AS1) to control growth and mycotoxin production by Penicillium verrucosum, Fusarium verticillioides and Aspergillus fumigatus in culture. Mycotoxin Research, 2020, 36, 225-234.                    | 2.3      | 10           |
| 239 | Effect of pretreatments on mycotoxin profiles and levels in dried figs. Arhiv Za Higijenu Rada I<br>Toksikologiju, 2018, 69, 328-333.                                                                                                                 | 0.7      | 10           |
| 240 | Chromatographic characterisation of a novel type of monolithic methylsilsesquioxaneâ€based HPLC column. Journal of Separation Science, 2007, 30, 2888-2899.                                                                                           | 2.5      | 9            |
| 241 | Mycotoxin Cocktail in the Samples of Oilseed Cake from Early Maturing Cotton Varieties Associated with Cattle Feeding Problems. Toxins, 2015, 7, 2188-2197.                                                                                           | 3.4      | 9            |
| 242 | The Response of Selected Triticum spp. Genotypes with Different Ploidy Levels to Head Blight Caused by Fusarium culmorum (W.G.Smith) Sacc Toxins, 2016, 8, 112.                                                                                       | 3.4      | 9            |
| 243 | Impact of the insecticide application to maize cultivated in different environmental conditions on emerging mycotoxins. Field Crops Research, 2018, 217, 188-198.                                                                                     | 5.1      | 9            |
| 244 | Survey of roasted street-vended nuts in Sierra Leone for toxic metabolites of fungal origin. Food<br>Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018,<br>35, 1573-1580.                          | 2.3      | 9            |
| 245 | A comparative investigation of the effects of feed-borne deoxynivalenol (DON) on growth performance, nutrient utilization and metabolism of detoxification in rainbow trout (Oncorhynchus) Tj ETQq1 1 carbohydrates. Aquaculture, 2019, 505, 306-318. | 0.784314 | rgßT /Over o |
| 246 | Screening of Various Metabolites in Six Barley Varieties Grown under Natural Climatic Conditions<br>(2016‰2018). Microorganisms, 2019, 7, 532.                                                                                                        | 3.6      | 9            |
| 247 | Polyphasic Approach Utilized for the Identification of Two New Toxigenic Members of Penicillium<br>Section Exilicaulis, P. krskae and P. silybi spp. nov Journal of Fungi (Basel, Switzerland), 2021, 7, 557.                                         | 3.5      | 9            |
| 248 | In-vitro sulfation of piceatannol by human liver cytosol and recombinant sulfotransferases. Journal of Pharmacy and Pharmacology, 2009, 61, 185-191.                                                                                                  | 2.4      | 9            |
| 249 | Assessment of Microbiological Indoor Air Quality in Cattle Breeding Farms. Aerosol and Air Quality Research, 2020, 20, 1353-1373.                                                                                                                     | 2.1      | 9            |
| 250 | Multitoxin analysis of <i>Aspergillus clavatus</i> -infected feed samples implicated in two outbreaks<br>of neuromycotoxicosis in cattle in South Africa. Onderstepoort Journal of Veterinary Research, 2014,<br>81, e1-e6.                           | 1.2      | 8            |
| 251 | Deletion of the celA gene in Aspergillus nidulans triggers overexpression of secondary metabolite biosynthetic genes. Scientific Reports, 2017, 7, 5978.                                                                                              | 3.3      | 8            |
| 252 | MycoKey Round Table Discussions of Future Directions in Research on Chemical Detection Methods,<br>Genetics and Biodiversity of Mycotoxins. Toxins, 2018, 10, 109.                                                                                    | 3.4      | 8            |

| #   | Article                                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Mycotoxin and cyanogenic glycoside assessment of the traditional leafy vegetables <i>mutete</i> and <i>omboga</i> from Namibia. Food Additives and Contaminants: Part B Surveillance, 2019, 12, 245-251.                                                                                                             | 2.8 | 8         |
| 254 | Maize and Grass Silage Feeding to Dairy Cows Combined with Different Concentrate Feed Proportions<br>with a Special Focus on Mycotoxins, Shiga Toxin (stx)-Forming Escherichia coli and Clostridium<br>botulinum Neurotoxin (BoNT) Genes: Implications for Animal Health and Food Safety. Dairy, 2020, 1,<br>91-125. | 2.0 | 8         |
| 255 | Fusarium Head Blight and Associated Mycotoxins in Grains and Straw of Barley: Influence of Agricultural Practices. Agronomy, 2021, 11, 801.                                                                                                                                                                          | 3.0 | 8         |
| 256 | Identification and Functional Characterization of the Gene Cluster Responsible for Fusaproliferin<br>Biosynthesis in Fusarium proliferatum. Toxins, 2021, 13, 468.                                                                                                                                                   | 3.4 | 8         |
| 257 | <i>Fusarium</i> metabolites in maize from regions of Northern Serbia in 2016-2017. Food Additives and Contaminants: Part B Surveillance, 2021, 14, 295-305.                                                                                                                                                          | 2.8 | 8         |
| 258 | A comparative study of qualitative immunochemical screening assays for the combined measurement of T-2/HT-2 in cereals and cereal-based products. World Mycotoxin Journal, 2011, 4, 385-394.                                                                                                                         | 1.4 | 8         |
| 259 | Fusarium Secondary Metabolite Content in Naturally Produced and Artificially Provoked FHB<br>Pressure in Winter Wheat. Agronomy, 2021, 11, 2239.                                                                                                                                                                     | 3.0 | 8         |
| 260 | Analysis of Mycotoxin and Secondary Metabolites in Commercial and Traditional Slovak Cheese<br>Samples. Toxins, 2022, 14, 134.                                                                                                                                                                                       | 3.4 | 8         |
| 261 | Cocktails of Mycotoxins, Phytoestrogens, and Other Secondary Metabolites in Diets of Dairy Cows in Austria: Inferences from Diet Composition and Geo-Climatic Factors. Toxins, 2022, 14, 493.                                                                                                                        | 3.4 | 8         |
| 262 | Mycotoxins and cyanogenic glycosides in staple foods of three indigenous people of the Colombian<br>Amazon. Food Additives and Contaminants: Part B Surveillance, 2015, 8, 150922031753004.                                                                                                                          | 2.8 | 7         |
| 263 | Putative neuromycotoxicoses in an adult male following ingestion of moldy walnuts. Mycotoxin Research, 2019, 35, 9-16.                                                                                                                                                                                               | 2.3 | 7         |
| 264 | Effect of interacting conditions of water activity, temperature and incubation time on Fusarium<br>thapsinum and Fusarium andiyazi growth and toxin production on sorghum grains. International<br>Journal of Food Microbiology, 2020, 318, 108468.                                                                  | 4.7 | 7         |
| 265 | Fungal isolates and metabolites in locally processed rice from five agro-ecological zones of Nigeria.<br>Food Additives and Contaminants: Part B Surveillance, 2016, 9, 281-289.                                                                                                                                     | 2.8 | 6         |
| 266 | Mycotoxin profiles of solar tent-dried and open sun-dried plantain chips. Food Control, 2021, 119, 107467.                                                                                                                                                                                                           | 5.5 | 6         |
| 267 | Collaborative investigation of matrix effects in mycotoxin determination by high performance liquid chromatography coupled to mass spectrometry. Quality Assurance and Safety of Crops and Foods, 2013, 5, 91-103.                                                                                                   | 3.4 | 6         |
| 268 | Evaluating the Performance of Lateral Flow Devices for Total Aflatoxins with Special Emphasis on<br>Their Robustness under Sub-Saharan Conditions. Toxins, 2021, 13, 742.                                                                                                                                            | 3.4 | 6         |
| 269 | Discoloured seeds of amaranth plant infected by Alternaria alternata: physiological,<br>histopathological alterations and fungal secondary metabolites associated or registered. Journal of<br>Plant Protection Research, 2016, 56, 244-249.                                                                         | 1.0 | 5         |
| 270 | Effects of water activity and temperature on fusaric and fusarinolic acid production by Fusarium temperatum. Food Control, 2020, 114, 107263.                                                                                                                                                                        | 5.5 | 5         |

| #   | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | DNA barcoding for the identification of mold species in bakery plants and products. Food Chemistry, 2020, 318, 126501.                                                                                                                                   | 8.2 | 5         |
| 272 | Two years study of <i>Aspergillus</i> metabolites prevalence in maize from the Republic of Serbia.<br>Journal of Food Processing and Preservation, 2022, 46, e15897.                                                                                     | 2.0 | 5         |
| 273 | The application of antagonistic yeasts and bacteria: An assessment of in vivo and under field conditions pattern of Fusarium mycotoxins in winter wheat grain. Food Control, 2022, 138, 109039.                                                          | 5.5 | 5         |
| 274 | RimO (SrrB) is required for carbon starvation signaling and production of secondary metabolites in Aspergillus nidulans. Fungal Genetics and Biology, 2022, 162, 103726.                                                                                 | 2.1 | 5         |
| 275 | Ecophysiology ofFusarium temperatumisolated from maize in Argentina. Food Additives and<br>Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 33, 1-10.                                                             | 2.3 | 4         |
| 276 | Multimycotoxin analysis of South African Aspergillus clavatus isolates. Mycotoxin Research, 2018, 34,<br>91-97.                                                                                                                                          | 2.3 | 4         |
| 277 | Fungal and plant metabolites in industrially-processed fruit juices in Nigeria. Food Additives and<br>Contaminants: Part B Surveillance, 2020, 13, 155-161.                                                                                              | 2.8 | 4         |
| 278 | Identification of Putative Virulence Genes by DNA Methylation Studies in the Cereal Pathogen<br>Fusarium graminearum. Cells, 2021, 10, 1192.                                                                                                             | 4.1 | 4         |
| 279 | Damage caused by Alternaria alternata to the quality and germination of amaranth seeds. European<br>Journal of Plant Pathology, 2022, 163, 193-202.                                                                                                      | 1.7 | 4         |
| 280 | Polaramycin B, and not physical interaction, is the signal that rewires fungal metabolism in the<br>Streptomyces–Aspergillus interaction. Environmental Microbiology, 2022, 24, 4899-4914.                                                               | 3.8 | 4         |
| 281 | 3rd International Symposium On Fusarium Head Blight, Session 7: Chemical, Cultural and Biological<br>Control, Poster presentations. Cereal Research Communications, 2008, 36, 701-730.                                                                   | 1.6 | 3         |
| 282 | Aspergillus parasiticus from wheat grain of Slovak origin and its toxigenic potency. Czech Journal of<br>Food Sciences, 2012, 30, 483-487.                                                                                                               | 1.2 | 3         |
| 283 | The Influence of Steeping Water Change during Malting on the Multi-Toxin Content in Malt. Foods, 2019, 8, 478.                                                                                                                                           | 4.3 | 3         |
| 284 | Enumeration of the microbiota and microbial metabolites in processed cassava products from<br>Madagascar and Tanzania. Food Control, 2019, 99, 164-170.                                                                                                  | 5.5 | 3         |
| 285 | Co-occurrence of mycotoxins, aflatoxin biosynthetic precursors, and <i>Aspergillus</i> metabolites<br>in garlic ( <i>Allium sativum</i> L) marketed in Zaria, Nigeria. Food Additives and Contaminants: Part B<br>Surveillance, 2021, 14, 23-29.         | 2.8 | 3         |
| 286 | Determination of multiple mycotoxins levels in poultry feeds from Cameroon. Japanese Journal of<br>Veterinary Research, 2013, 61 Suppl, S33-9.                                                                                                           | 0.7 | 3         |
| 287 | <i>Fusarium chaquense</i> , sp. nov, a novel type A trichothecene–producing species from native grasses in a wetland ecosystem in Argentina. Mycologia, 2022, 114, 46-62.                                                                                | 1.9 | 3         |
| 288 | An Interlaboratory Comparison Study of Regulated and Emerging Mycotoxins Using Liquid<br>Chromatography Mass Spectrometry: Challenges and Future Directions of Routine Multi-Mycotoxin<br>Analysis including Emerging Mycotoxins. Toxins, 2022, 14, 405. | 3.4 | 3         |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Interacting Environmental Stress Factors Affect Metabolomics Profiles in Stored Naturally<br>Contaminated Maize. Microorganisms, 2022, 10, 853.                                                                      | 3.6 | 2         |
| 290 | Infection timing affects <i>Fusarium poae</i> colonization of bread wheat spikes and mycotoxin accumulation in the grain. Journal of the Science of Food and Agriculture, 2022, 102, 6358-6372.                      | 3.5 | 2         |
| 291 | Presence of Alternaria toxins in maize from Republic of Serbia during 2016–2017. Journal of Food<br>Processing and Preservation, 0, , e15827.                                                                        | 2.0 | 1         |
| 292 | Pigment Produced by Glycine-Stimulated Macrophomina Phaseolina Is a (â^')-Botryodiplodin Reaction<br>Product and the Basis for an In-Culture Assay for (â^')-Botryodiplodin Production. Pathogens, 2022, 11,<br>280. | 2.8 | 1         |
| 293 | The Role of Nitrogen Fertilization on the Occurrence of Regulated, Modified and Emerging<br>Mycotoxins and Fungal Metabolites in Maize Kernels. Toxins, 2022, 14, 448.                                               | 3.4 | 1         |
| 294 | Occurrence, mycotoxins and toxicity of Fusarium species from Abelmoschus esculentus and Sesamum indicum seeds. Mycotoxins, 2013, 63, 27-38.                                                                          | 0.2 | 0         |
| 295 | Reisolation and NMR characterization of the satratoxins G and H. Magnetic Resonance in Chemistry, 2020, 58, 198-203.                                                                                                 | 1.9 | 0         |
| 296 | Beurteilung, Messmethoden, Identifizierung. , 2013, , 195-422.                                                                                                                                                       |     | 0         |
| 297 | Fusarium langsethiae and mycotoxin contamination in oat grain differed with growth stage at inoculation. European Journal of Plant Pathology, 2022, 164, 59-78.                                                      | 1.7 | 0         |