
Qiming Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3976676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanostructured NiO electrode for high rate Li-ion batteries. Journal of Materials Chemistry, 2011, 21, 3571.	6.7	330
2	High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodes. Journal of Materials Chemistry A, 2016, 4, 10166-10173.	10.3	179
3	Group IVA Element (Si, Ge, Sn)â€Based Alloying/Dealloying Anodes as Negative Electrodes for Fullâ€Cell Lithium″on Batteries. Small, 2017, 13, 1702000.	10.0	163
4	Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries. Electrochimica Acta, 2017, 256, 28-36.	5.2	106
5	Highly efficient crystalline silicon/Zonyl fluorosurfactant-treated organic heterojunction solar cells. Applied Physics Letters, 2012, 100, .	3.3	102
6	MXenes for Solar Cells. Nano-Micro Letters, 2021, 13, 78.	27.0	90
7	Highly Efficient Solutionâ€Processed Poly(3,4â€ethylenedioâ€xythiophene):Poly(styrenesulfonate)/Crystalline–Silicon Heterojunction Solar Cells with Improved Lightâ€Induced Stability. Advanced Energy Materials, 2015, 5, 1500744.	19.5	85
8	Nb ₂ O ₅ /RGO Nanocomposite Modified Separators with Robust Polysulfide Traps and Catalytic Centers for Boosting Performance of Lithium–Sulfur Batteries. Small, 2019, 15, e1902363.	10.0	83
9	Nafion-Modified PEDOT:PSS as a Transparent Hole-Transporting Layer for High-Performance Crystalline-Si/Organic Heterojunction Solar Cells with Improved Light Soaking Stability. ACS Applied Materials & Interfaces, 2016, 8, 31926-31934.	8.0	63
10	High-performance free-standing capacitor electrodes of multilayered Co9S8 plates wrapped by carbonized poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/reduced graphene oxide. Journal of Power Sources, 2018, 379, 167-173.	7.8	59
11	Hybrid energy system based on solar cell and self-healing/self-cleaning triboelectric nanogenerator. Nano Energy, 2021, 79, 105394.	16.0	56
12	High performance silicon–organic hybrid solar cells via improving conductivity of PEDOT:PSS with reduced graphene oxide. Applied Surface Science, 2017, 407, 398-404.	6.1	51
13	Silicon nanocrystal conjugated polymer hybrid solar cells with improved performance. Nano Energy, 2014, 9, 25-31.	16.0	50
14	MoS2/Ni3S4 composite nanosheets on interconnected carbon shells as an excellent supercapacitor electrode architecture for long term cycling at high current densities. Applied Surface Science, 2018, 440, 741-747.	6.1	49
15	Correlation between the fine structure of spin-coated PEDOT:PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells. Journal of Applied Physics, 2016, 120, .	2.5	46
16	Optical anisotropy in solvent-modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) and its effect on the photovoltaic performance of crystalline silicon/organic heterojunction solar cells. Applied Physics Letters, 2013, 102, .	3.3	43
17	Oxygen passivation of silicon nanocrystals: Influences on trap states, electron mobility, and hybrid solar cell performance. Nano Energy, 2014, 10, 322-328.	16.0	42
18	Green-tea modified multiwalled carbon nanotubes for efficient poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate)/n-silicon hybrid solar cell. Applied Physics Letters, 2013, 102, .	3.3	31

QIMING LIU

#	Article	IF	CITATIONS
19	Sheet-Like Stacking SnS ₂ /rGO Heterostructures as Ultrastable Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 11739-11749.	8.0	28
20	Facile embedding of SiO2 nanoparticles in organic solar cells for performance improvement. Organic Electronics, 2017, 50, 77-81.	2.6	25
21	Molybdenum disulfide nanosheets embedded in hollow nitrogen-doped carbon spheres for efficient lithium/sodium storage with enhanced electrochemical kinetics. Electrochimica Acta, 2018, 283, 646-654.	5.2	24
22	Mesoporous boron carbon nitride/graphene modified separators as efficient polysulfides barrier for highly stable lithium-sulfur batteries. Journal of Electroanalytical Chemistry, 2019, 842, 34-40.	3.8	24
23	Enhanced performance of polymer solar cells by adding SnO2 nanoparticles in the photoactive layer. Organic Electronics, 2019, 73, 7-12.	2.6	21
24	Efficient organic/polycrystalline silicon hybrid solar cells. Nano Energy, 2015, 11, 260-266.	16.0	18
25	High-performanceÂSi/organic hybrid solar cells using a novel cone-shaped Si nanoholes structures and back surface passivation layer. Nano Energy, 2017, 41, 519-526.	16.0	18
26	The influence of H2/Ar ratio on Ge content of the μc-SiGe:H films deposited by PECVD. Journal of Alloys and Compounds, 2010, 504, 403-406.	5.5	17
27	Self-assembled silver nanowires as top electrode for poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate)/n-silicon solar cell. Thin Solid Films, 2014, 558, 306-310.	1.8	16
28	Bridging for Carriers by Embedding Metal Oxide Nanoparticles in the Photoactive Layer to Enhance Performance of Polymer Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 1353-1358.	2.5	16
29	Solution-processed crystalline silicon double-heterojunction solar cells. Applied Physics Express, 2016, 9, 022301.	2.4	15
30	The optoelectronic properties of silicon films deposited by inductively coupled plasma CVD. Applied Surface Science, 2010, 257, 817-822.	6.1	14
31	Greatly improved cyclability for Li-ion batteries with a PEDOT–PSS coated nanostructured Ge anode. Surfaces and Interfaces, 2017, 8, 214-218.	3.0	14
32	Optical properties and carrier transport in c-Si/conductive PEDOT:PSS(GO) composite heterojunctions. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2075-2078.	0.8	13
33	Improved comprehensive performance of CsPbI2Br perovskite solar cells by modifying the photoactive layers with carbon nanodots. Journal of Materiomics, 2022, 8, 358-365.	5.7	13
34	Effect of Ar in the source gas on the microstructure and optoelectronic properties of microcrystalline silicon films deposited by plasma-enhanced CVD. Applied Surface Science, 2010, 257, 1342-1346.	6.1	12
35	Plasmonicâ€enhanced crystalline silicon/organic heterojunction cells by incorporating gold nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1179-1183.	1.8	12

QIMING LIU

#	Article	IF	CITATIONS
37	Enhanced performance and the related mechanisms of organic solar cells using Li-doped SnO2 as the electron transport layer. Materials Chemistry and Physics, 2020, 254, 123536.	4.0	9
38	Efficient crystalline Si/organic hybrid heterojunction solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2101-2106.	0.8	8
39	Twenty Percent Efficiency Crystalline Silicon Solar Cells with Solution-Processed Electron-Selective Contacts. ACS Applied Energy Materials, 2021, 4, 3644-3650.	5.1	8
40	Improved performance of poly(3,4-ethylenedioxythiophene):poly(stylene sulfonate)/n-Si hybrid solar cell by incorporating silver nanoparticles. Japanese Journal of Applied Physics, 2014, 53, 110305.	1.5	7
41	Self assembled silver nanowire mesh as top electrode for organic–inorganic hybrid solar cell. Canadian Journal of Physics, 2014, 92, 867-870.	1.1	7
42	The effect of Ar flow rate in the growth of SiGe:H thin films by PECVD. Applied Surface Science, 2010, 256, 7032-7036.	6.1	6
43	Excellent Light Confinement of Hemiellipsoid- and Inverted Hemiellipsoid-Modified Semiconductor Nanowire Arrays. Nanoscale Research Letters, 2018, 13, 236.	5.7	6
44	Sandwich-like SnS ₂ /graphene multilayers for efficient lithium/sodium storage. Dalton Transactions, 2021, 50, 14884-14890.	3.3	6
45	NaBr-Modified CsPbI ₂ Br Improves the Comprehensive Performance of the Solar Cells. IEEE Journal of Photovoltaics, 2022, 12, 948-953.	2.5	6
46	SnCl ₄ -Treated Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets for Schottky Junction Solar Cells with Improved Performance. ACS Applied Nano Materials, 2022, 5, 10064-10072.	5.0	6
47	Electrospray Deposition of Poly(3-hexylthiophene) Films for Crystalline Silicon/Organic Hybrid Junction Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 061602.	1.5	5
48	Improvement of the Optoelectrical Properties of a Transparent Conductive Polymer via a Simple Mechanical Pressure Treatment. ACS Omega, 2020, 5, 7545-7554.	3.5	5
49	Improvement of the Optoelectrical Properties of a Transparent Conductive Polymer via the Introduction of ITO Nanoparticles and Its Application in Crystalline Silicon/Organic Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 31171-31179.	8.0	5
50	Crystalline Silicon/Graphene Oxide Hybrid Junction Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NE22.	1.5	5
51	High-Efficiency Si/PEDOT:PSS Hybrid Heterojunction Solar Cells Using Solution-Processed Graphene Oxide as an Antireflection and Inversion-Induced Layer. ACS Applied Energy Materials, 2021, 4, 13279-13287.	5.1	5
52	Optical Anisotropy and Compositional Ratio of Conductive Polymer PEDOT:PSS and Their Effect on Photovoltaic Performance of Crystalline Silicon/Organic Heterojunction Solar Cells. , 2018, , 137-159.		4
53	Solutionâ€Processed Organic/pâ€Type Silicon Hybrid Heterojunction Solar Cells. Physica Status Solidi - Rapid Research Letters, 0, , 2000560.	2.4	4
54	Electrospray Deposition of Poly(3-hexylthiophene) Films for Crystalline Silicon/Organic Hybrid Junction Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 061602.	1.5	4

QIMING LIU

⁵⁵ Solution-Processed Back-Contact PEDOT:PSS/n-Si Heterojunction Solar Cells. ACS Applied Energy Materials, 2022, 5, 5502-5507.	5.1	4
⁵⁶ Improved photovoltaic response by incorporating green tea modified multiwalled carbon nanotubes in organic–inorganic hybrid solar cell. Canadian Journal of Physics, 2014, 92, 849-852.	1.1	2
57 Synergetic effects of a front ITO nanocylinder array and a back square Al array to enhance light absorption for organic solar cells. Applied Optics, 2022, 61, 1726.	1.8	2
 Selfâ€Support Surface Enhanced Raman Scattering Substrates with the Function of Enriching Analytes. Advanced Materials Interfaces, 2018, 5, 1800559. 	3.7	1
59 Solution-Processed Organic/Crystalline-Silicon Heterojunction Solar Cells with Improved Light-Induced Stability. , 2015, , .		0