Richard C Macknight

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3976099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel <i>TFL1</i> gene induces flowering in the mast seeding alpine snow tussock, <i>Chionochloa pallens</i> (Poaceae). Molecular Ecology, 2022, 31, 822-838.	3.9	2
2	A Point Mutation in Phytochromobilin synthase Alters the Circadian Clock and Photoperiodic Flowering of Medicago truncatula. Plants, 2022, 11, 239.	3.5	3
3	PHOSPHATIDYLETHANOLAMINE-BINDING PROTEINS: the conductors of dual reproduction in plants with vegetative storage organs. Journal of Experimental Botany, 2021, 72, 2845-2856.	4.8	30
4	RNAi-mediated repression of dormancy-related genes results in evergrowing apple trees. Tree Physiology, 2021, 41, 1510-1523.	3.1	24
5	Identification and Characterization of Perennial Ryegrass (Lolium perenne) Vernalization Genes. Frontiers in Plant Science, 2021, 12, 640324.	3.6	3
6	Molecular control of the floral transition in the mast seeding plant Celmisia Iyallii (Asteraceae). Molecular Ecology, 2021, 30, 1846-1863.	3.9	9
7	Prospects for F1 hybrid production in ryegrass. New Zealand Journal of Agricultural Research, 2020, 63, 405-415.	1.6	11
8	Identification of flowering-time genes in mast flowering plants using De Novo transcriptomic analysis. PLoS ONE, 2019, 14, e0216267.	2.5	4
9	Molecular Characterisation of a Supergene Conditioning Super-High Vitamin C in Kiwifruit Hybrids. Plants, 2019, 8, 237.	3.5	7
10	Genome draft of the Arabidopsis relative Pachycladon cheesemanii reveals novel strategies to tolerate New Zealand's high ultraviolet B radiation environment. BMC Genomics, 2019, 20, 838.	2.8	9
11	Histone modification and activation by SOC1-like and drought stress-related transcription factors may regulate AcSVP2 expression during kiwifruit winter dormancy. Plant Science, 2019, 281, 242-250.	3.6	28
12	Complete Genome Sequence of a New Zealand Isolate of the Bovine Pathogen Streptococcus uberis. Genome Announcements, 2018, 6, .	0.8	3
13	Kiwifruit SVP2 controls developmental and drought-stress pathways. Plant Molecular Biology, 2018, 96, 233-244.	3.9	17
14	A Guide for the Cultivation of Onion under Controlled Environment Conditions. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 1746-1749.	1.0	5
15	Comparative transcriptome analysis of the wild-type model apomict Hieracium praealtum and its loss of parthenogenesis (lop) mutant. BMC Plant Biology, 2018, 18, 206.	3.6	14
16	Molecular Mapping of Genes and QTL: Progress to Date and Development of New Population Resources for NGS Genetics. Compendium of Plant Genomes, 2018, , 181-196.	0.5	0
17	Gene Family Evolution in Allium Species. Compendium of Plant Genomes, 2018, , 145-159.	0.5	1
18	Medicago truncatula SOC1 Genes Are Up-regulated by Environmental Cues That Promote Flowering. Frontiers in Plant Science, 2018, 9, 496.	3.6	30

RICHARD C MACKNIGHT

#	Article	IF	CITATIONS
19	Functional Genomics and Flowering Time in Medicago truncatula: An Overview. Methods in Molecular Biology, 2018, 1822, 261-271.	0.9	11
20	Overexpression of both AcSVP1 and AcSVP4 delays budbreak in kiwifruit A. chinensis var. deliciosa, but only AcSVP1 delays flowering in model plants. Environmental and Experimental Botany, 2018, 153, 262-270.	4.2	14
21	Increasing ascorbate levels in crops to enhance human nutrition and plant abiotic stress tolerance. Current Opinion in Biotechnology, 2017, 44, 153-160.	6.6	72
22	Kiwifruit SVP2 gene prevents premature budbreak during dormancy. Journal of Experimental Botany, 2017, 68, 1071-1082.	4.8	62
23	The Chickpea <i>Early Flowering 1</i> (<i>Efl1</i>) Locus Is an Ortholog of Arabidopsis <i>ELF3</i> . Plant Physiology, 2017, 175, 802-815.	4.8	54
24	SVP-like MADS Box Genes Control Dormancy and Budbreak in Apple. Frontiers in Plant Science, 2017, 08, 477.	3.6	121
25	Importance of Vitamin C in Human Health and Disease. , 2017, , 491-501.		2
26	Identification of <i>LATE BLOOMER2</i> as a <i>CYCLING DOF FACTOR</i> Homolog Reveals Conserved and Divergent Features of the Flowering Response to Photoperiod in Pea. Plant Cell, 2016, 28, 2545-2559.	6.6	26
27	Enhancing onion breeding using molecular tools. Plant Breeding, 2016, 135, 9-20.	1.9	50
28	Infiltration-RNAseq: transcriptome profiling of Agrobacterium-mediated infiltration of transcription factors to discover gene function and expression networks in plants. Plant Methods, 2016, 12, 41.	4.3	26
29	The Emerging World of Small ORFs. Trends in Plant Science, 2016, 21, 317-328.	8.8	99
30	Doubled Haploid â€~CUDH2107' as a Reference for Bulb Onion (Allium cepa L.) Research: Development of a Transcriptome Catalogue and Identification of Transcripts Associated with Male Fertility. PLoS ONE, 2016, 11, e0166568.	2.5	14
31	Developmentally regulated <i>HEART STOPPER</i> , a mitochondrially targeted L18 ribosomal protein gene, is required for cell division, differentiation, and seed development in <i>Arabidopsis</i> . Journal of Experimental Botany, 2015, 66, 5867-5880.	4.8	24
32	An Upstream Open Reading Frame Is Essential for Feedback Regulation of Ascorbate Biosynthesis in Arabidopsis. Plant Cell, 2015, 27, 772-786.	6.6	192
33	Isolation and functional analysis of CONSTANS-LIKE genes suggests that a central role for CONSTANS in flowering time control is not evolutionarily conserved in Medicago truncatula. Frontiers in Plant Science, 2014, 5, 486.	3.6	80
34	Overexpression of <i>Medicago SVP</i> genes causes floral defects and delayed flowering in <i>Arabidopsis</i> but only affects floral development in <i>Medicago</i> . Journal of Experimental Botany, 2014, 65, 429-442.	4.8	55
35	Genetic analyses of bolting in bulb onion (Allium cepa L.). Theoretical and Applied Genetics, 2014, 127, 535-547.	3.6	31
36	The role of the MCM2-7 helicase complex during Arabidopsis seed development. Plant Molecular Biology, 2014, 86, 69-84.	3.9	32

RICHARD C MACKNIGHT

#	Article	IF	CITATIONS
37	Screening for Imprinted Genes Using High-Resolution Melting Analysis of PCR Amplicons. Methods in Molecular Biology, 2014, 1112, 71-83.	0.9	0
38	FLOWERING LOCUS T genes control onion bulb formation and flowering. Nature Communications, 2013, 4, 2884.	12.8	197
39	Transient Gene Expression in Medicago truncatula Leaves via Agroinfiltration. Methods in Molecular Biology, 2013, 1069, 215-226.	0.9	16
40	A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proceedings of the United States of America, 2012, 109, 21158-21163.	7.1	159
41	A Toolkit for bulk PCR-based marker design from next-generation sequence data: application for development of a framework linkage map in bulb onion (Allium cepa L.). BMC Genomics, 2012, 13, 637.	2.8	38
42	The Pea <i>GIGAS</i> Gene Is a <i>FLOWERING LOCUS T</i> Homolog Necessary for Graft-Transmissible Specification of Flowering but Not for Responsiveness to Photoperiod Â. Plant Cell, 2011, 23, 147-161.	6.6	176
43	Association mapping of cold-induced sweetening in potato using historical phenotypic data. Annals of Applied Biology, 2011, 158, 248-256.	2.5	36
44	Developing a method for customized induction of flowering. BMC Biotechnology, 2011, 11, 36.	3.3	33
45	Rapid analysis of seed size in Arabidopsis for mutant and QTL discovery. Plant Methods, 2011, 7, 3.	4.3	99
46	The Medicago <i>FLOWERING LOCUS T</i> Homolog, <i>MtFTa1</i> , Is a Key Regulator of Flowering Time Â. Plant Physiology, 2011, 156, 2207-2224.	4.8	133
47	FRIGIDA and related proteins have a conserved central domain and family specific N- and C- terminal regions that are functionally important. Plant Molecular Biology, 2010, 73, 493-505.	3.9	29
48	Noncanonical Translation Initiation of the <i>Arabidopsis</i> Flowering Time and Alternative Polyadenylation Regulator FCA Â. Plant Cell, 2010, 22, 3764-3777.	6.6	33
49	<i>DIE NEUTRALIS</i> and <i>LATE BLOOMER 1</i> Contribute to Regulation of the Pea Circadian Clock. Plant Cell, 2009, 21, 3198-3211.	6.6	65
50	Identification of cytoskeleton-associated genes expressed during Arabidopsis syncytial endosperm development. Plant Signaling and Behavior, 2009, 4, 883-886.	2.4	8
51	Reevaluation of Abscisic Acid-Binding Assays Shows That G-Protein-Coupled Receptor2 Does Not Bind Abscisic Acid. Plant Physiology, 2009, 150, 6-11.	4.8	48
52	FCA does not bind abscisic acid. Nature, 2008, 456, E5-E6.	27.8	40
53	Transcriptome Analysis of Proliferating Arabidopsis Endosperm Reveals Biological Implications for the Control of Syncytial Division, Cytokinin Signaling, and Gene Expression Regulation Â. Plant Physiology, 2008, 148, 1964-1984.	4.8	134
54	Evaluation of Global RNA Amplification and Its Use for High-Throughput Transcript Analysis of Laser-Microdissected Endosperm. International Journal of Plant Genomics, 2007, 2007, 1-17.	2.2	21

RICHARD C MACKNIGHT

#	Article	IF	CITATIONS
55	Transcript analysis of laser microdissected plant cells. Physiologia Plantarum, 2006, 129, 267-282.	5.2	32
56	Conservation of Arabidopsis Flowering Genes in Model Legumes. Plant Physiology, 2005, 137, 1420-1434.	4.8	270
57	Components of the Arabidopsis autonomous floral promotion pathway, FCA and FY, are conserved in monocots. Functional Plant Biology, 2005, 32, 345.	2.1	19
58	Be more specific! Laser-assisted microdissection of plant cells. Trends in Plant Science, 2005, 10, 397-406.	8.8	129
59	It's time to flower: the genetic control of flowering time. BioEssays, 2004, 26, 363-373.	2.5	436
60	RNA processing and Arabidopsis flowering time control. Biochemical Society Transactions, 2004, 32, 565-566.	3.4	28
61	Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO Journal, 2003, 22, 3142-3152.	7.8	252
62	Functional Significance of the Alternative Transcript Processing of the Arabidopsis Floral Promoter FCA. Plant Cell, 2002, 14, 877-888.	6.6	220
63	Molecular Analysis Of Flowering Time And Vernalization Response In Arabidopsis, A Minireview. Developments in Plant Genetics and Breeding, 2000, , 115-121.	0.6	0
64	Genetic interactions of the Arabidopsis flowering time geneFCA,with genes regulating floral initiation. Plant Journal, 1999, 17, 231-239.	5.7	55
65	FCA, a Gene Controlling Flowering Time in Arabidopsis, Encodes a Protein Containing RNA-Binding Domains. Cell, 1997, 89, 737-745.	28.9	480
66	Analysis of the lupin Nodulin-45 promoter: conserved regulatory sequences are important for promoter activity. Plant Molecular Biology, 1995, 27, 457-466.	3.9	12
67	Miconazole: An effective antifungal agent for plant tissue culture. Plant Cell, Tissue and Organ Culture, 1993, 32, 293-301.	2.3	5