Philip W Becraft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3975380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ROUGH SHEATH2: A Myb Protein That Represses knox Homeobox Genes in Maize Lateral Organ Primordia. Science, 1999, 284, 151-153.	12.6	317
2	An <i>Agrobacterium</i> â€delivered <scp>CRISPR</scp> /Cas9 system for highâ€frequency targeted mutagenesis in maize. Plant Biotechnology Journal, 2017, 15, 257-268.	8.3	300
3	Receptor Kinase Signaling in Plant Development. Annual Review of Cell and Developmental Biology, 2002, 18, 163-192.	9.4	238
4	From dwarves to giants? Plant height manipulation for biomass yield. Trends in Plant Science, 2009, 14, 454-461.	8.8	195
5	The liguleless-1 gene acts tissue specifically in maize leaf development. Developmental Biology, 1990, 141, 220-232.	2.0	132
6	Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics, 2007, 8, 116.	2.8	124
7	The maize <i>dek1</i> gene functions in embryonic pattern formation and cell fate specification. Development (Cambridge), 2002, 129, 5217-5225.	2.5	116
8	Regulation of aleurone development in cereal grains. Journal of Experimental Botany, 2011, 62, 1669-1675.	4.8	115
9	Receptor kinases in plant development. Trends in Plant Science, 1998, 3, 384-388.	8.8	105
10	RNA Interference Knockdown of BRASSINOSTEROID INSENSITIVE1 in Maize Reveals Novel Functions for Brassinosteroid Signaling in Controlling Plant Architecture. Plant Physiology, 2015, 169, 826-839.	4.8	93
11	Cell fate specification in the cereal endosperm. Seminars in Cell and Developmental Biology, 2001, 12, 387-394.	5.0	92
12	The maize CR4 receptor-like kinase mediates a growth factor-like differentiation response. Genesis, 2000, 27, 104-116.	1.6	89
13	Maize <i>opaque5</i> Encodes Monogalactosyldiacylglycerol Synthase and Specifically Affects Galactolipids Necessary for Amyloplast and Chloroplast Function Â. Plant Cell, 2011, 23, 2331-2347.	6.6	85
14	Abscisic Acid and Stress Signals Induce Viviparous1 Expression in Seed and Vegetative Tissues of Maize. Plant Physiology, 2007, 143, 720-731.	4.8	74
15	The Maize CRINKLY4 Receptor Kinase Controls a Cell-Autonomous Differentiation Response. Plant Physiology, 2001, 127, 486-496.	4.8	64
16	Endosperm development: dynamic processes and cellular innovations underlying sibling altruism. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 579-593.	5.9	60
17	The <i>naked endosperm</i> Genes Encode Duplicate INDETERMINATE Domain Transcription Factors Required for Maize Endosperm Cell Patterning and Differentiation Â. Plant Physiology, 2015, 167, 443-456.	4.8	58
18	NKD Transcription Factors Are Central Regulators of Maize Endosperm Development. Plant Cell, 2016, 28, 2916-2936.	6.6	56

PHILIP W BECRAFT

#	Article	IF	CITATIONS
19	The maize dek1 gene functions in embryonic pattern formation and cell fate specification. Development (Cambridge), 2002, 129, 5217-25.	2.5	52
20	Molecular analysis of the CRINKLY4 gene family in Arabidopsis thaliana. Planta, 2005, 220, 645-657.	3.2	47
21	The thick aleurone1 Mutant Defines a Negative Regulation of Maize Aleurone Cell Fate That Functions Downstream of defective kernel1 Â Â Â Â. Plant Physiology, 2011, 156, 1826-1836.	4.8	32
22	Redundant <i>SCARECROW</i> genes pattern distinct cell layers in roots and leaves of maize. Development (Cambridge), 2019, 146, .	2.5	32
23	Aleurone Cell Development. , 2007, , 45-56.		25
24	1 Development of the Leaf Epidermis. Current Topics in Developmental Biology, 1999, 45, 1-40.	2.2	24
25	Fitness Costs and Variation in Transmission Distortion Associated with the Abnormal Chromosome 10 Meiotic Drive System in Maize. Genetics, 2018, 208, 297-305.	2.9	23
26	A putative plant organelle RNA recognition protein gene is essential for maize kernel development. Journal of Integrative Plant Biology, 2015, 57, 236-246.	8.5	17
27	The Maize CRINKLY4 Receptor Kinase Controls a Cell-Autonomous Differentiation Response. Plant Physiology, 2001, 127, 486-496.	4.8	17
28	Highâ€ŧhroughput linkage analysis of <i>Mutator</i> insertion sites in maize. Plant Journal, 2009, 58, 883-892.	5.7	16
29	The <i>thick aleurone1</i> Gene Encodes a NOT1 Subunit of the CCR4-NOT Complex and Regulates Cell Patterning in Endosperm. Plant Physiology, 2020, 184, 960-972.	4.8	13
30	Plant steroids recognized at the cell surface. Trends in Genetics, 2001, 17, 60-62.	6.7	7
31	Maize Endosperm Development: Tissues, Cells, Molecular Regulation and Grain Quality Improvement. Frontiers in Plant Science, 2022, 13, 852082.	3.6	7
32	Restorer-of-Fertility Mutations Recovered in Transposon-Active Lines of S Male-Sterile Maize. G3: Genes, Genomes, Genetics, 2018, 8, 291-302.	1.8	5
33	Cell interactions in plants. Current Opinion in Genetics and Development, 1992, 2, 571-575.	3.3	4
34	Endosperm Imprinting: A Child Custody Battle?. Current Biology, 2012, 22, R93-R95.	3.9	3
35	Comparative transcriptomics and network analysis define gene coexpression modules that control maize aleurone development and auxin signaling. Plant Genome, 2021, 14, e20126.	2.8	3
36	Using Transposons for Genetic Mosaic Analysis of Plant Development. Methods in Molecular Biology, 2013, 1057, 21-42.	0.9	3

#	Article	IF	CITATIONS
37	Sectors of liguleless-1 Tissue Interrupt an Inductive Signal during Maize Leaf Development. Plant Cell, 1991, 3, 801.	6.6	2
38	The Function of the Maize CRINKLY4 Receptor-like Kinase in a Growth Factor Like Signaling System. , 2001, , 157-165.		0
39	Endosperm Development. , 2004, , 414-417.		0
40	Photography of Maize. , 1994, , 180-185.		0