Shengwei Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3974874/publications.pdf Version: 2024-02-01

SHENCWEI SHI

#	Article	IF	CITATIONS
1	Emerging Biopolymerâ€Based Bioadhesives. Macromolecular Bioscience, 2022, 22, e2100340.	4.1	26
2	Surfaceâ€Engineered Ti ₃ C ₂ T <i>_x</i> with Tunable Work Functions for Highly Efficient Polymer Solar Cells. Small, 2022, 18, e2201046.	10.0	20
3	Intercalation Effects on the Electrochemical Properties of Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets for High-Performance Supercapacitors. ACS Applied Nano Materials, 2022, 5, 8794-8803.	5.0	18
4	Two-dimensional Bi2OS2 doping improves the performance and stability of perovskite solar cells. Chemical Engineering Journal, 2021, 420, 127700.	12.7	16
5	Recent advances in 2D MXenes: preparation, intercalation and applications in flexible devices. Journal of Materials Chemistry A, 2021, 9, 14147-14171.	10.3	90
6	Work Function Adjustment of Nb ₂ CT _{<i>x</i>} Nanoflakes as Hole and Electron Transport Layers in Organic Solar Cells by Controlling Surface Functional Groups. ACS Energy Letters, 2021, 6, 3464-3472.	17.4	54
7	Synthesis of biomass-derived N,O-codoped hierarchical porous carbon with large surface area for high-performance supercapacitor. Journal of Energy Storage, 2021, 44, 103286.	8.1	69
8	Fused-ring phenazine building blocks for efficient copolymer donors. Materials Chemistry Frontiers, 2020, 4, 1454-1458.	5.9	21
9	Recent progress in silver nanowire networks for flexible organic electronics. Journal of Materials Chemistry C, 2020, 8, 4636-4674.	5.5	122
10	Charge Transport and Photovoltaic Properties of Conjugated Polymer PTB7:PC71BM Based Solar Cells. Transactions on Electrical and Electronic Materials, 2020, 21, 436-441.	1.9	1
11	An efficient medium-bandgap nonfullerene acceptor for organic solar cells. Journal of Materials Chemistry A, 2020, 8, 8857-8861.	10.3	17
12	Photosensitizer and anticancer drug-loaded 2D nanosheet: Preparation, stability and anticancer property. 2D Materials, 2019, 6, 045035.	4.4	9
13	ZnO nanorod arrays modified with Bi2S3 nanoparticles as cathode for efficient polymer solar cells. Organic Electronics, 2019, 75, 105369.	2.6	8
14	Electronic and magnetic properties of a ferromagnetic cobalt surface by adsorbing ultrathin films of tetracyanoethylene. Physical Chemistry Chemical Physics, 2019, 21, 15833-15844.	2.8	4
15	Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency. Science Bulletin, 2019, 64, 1573-1576.	9.0	140
16	Bismuth oxysulfide modified ZnO nanorod arrays as an efficient electron transport layer for inverted polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 14776-14789.	10.3	63
17	Optical properties of aluminosilicate phosphor for lighting and temperature sensing. Journal of Luminescence, 2019, 213, 241-248.	3.1	11
18	Room-temperature synthesized SnO ₂ electron transport layers for efficient perovskite solar cells. RSC Advances, 2019, 9, 9946-9950.	3.6	21

Shengwei Shi

#	Article	IF	CITATIONS
19	Finite size effects on the magnetocaloric properties around blocking temperature in < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e783" altimg="si43.gif" > <mml:mi>î³ </mml:mi> -Fe2O3Ânanoparticles. Physica A: Statistical Mechanics and Its Applications, 2019, 523, 260-267.	2.6	14
20	Solid-Phase Debundling of Single-Walled Carbon Nanotubes for the "Stock Solid―Delivery of Concentrated Nanotube Dispersions. ACS Applied Nano Materials, 2019, 2, 1720-1726.	5.0	4
21	A wide-bandgap copolymer donor based on a phenanthridin-6(5 <i>H</i>)-one unit. Materials Chemistry Frontiers, 2019, 3, 2686-2689.	5.9	6
22	Improving the performance of inverted polymer solar cells by the efficiently doping and modification of electron transport layer-ZnO. Organic Electronics, 2019, 65, 311-320.	2.6	25
23	Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules. ACS Applied Materials & Interfaces, 2018, 10, 14922-14929.	8.0	81
24	Synthesis and characterization of novel red-emitting conjugated polymers based on triphenylaminesilole-carbazole-fluorene. Materials Chemistry and Physics, 2018, 212, 208-213.	4.0	9
25	11,11,12,12â€Tetracyanonaphthoâ€2,6â€quinodimethane in Contact with Ferromagnetic Electrodes for Organic Spintronics. Advanced Electronic Materials, 2018, 4, 1800077.	5.1	3
26	Synergetic effects of acid treatment and localized surface plasmon resonance in PEDOT:PSS layers by doping HAuCl4 for efficient polymer solar cells. Organic Electronics, 2018, 62, 121-132.	2.6	14
27	Efficient and stable mixed perovskite solar cells using P3HT as a hole transporting layer. Journal of Materials Chemistry C, 2018, 6, 5733-5737.	5.5	61
28	Efficient Production of Singleâ€Walled Carbon Nanotube Aqueous Dispersion Using Hexahydroxytriphenylene as a Dispersant and Stabilizer. ChemistrySelect, 2018, 3, 6081-6086.	1.5	4
29	Phthalocyanine based molecular spintronic devices. Dalton Transactions, 2016, 45, 16694-16699.	3.3	36
30	Role of Thickâ€Lithium Fluoride Layer in Energy Level Alignment at Organic/Metal Interface: Unifying Effect on High Metallic Work Functions. Advanced Materials Interfaces, 2015, 2, 1400527.	3.7	21
31	Improving power conversion efficiency of polymer solar cells by doping copper phthalocyanine. Electrochimica Acta, 2015, 180, 645-650.	5.2	11
32	Effects of side groups on the kinetics of charge carrier recombination in dye molecule-doped multilayer organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 46-50.	5.5	4
33	Origin of the anomalous temperature dependence of coercivity in soft ferromagnets. Journal of Applied Physics, 2014, 116, .	2.5	12
34	Hybrid Interface States and Spin Polarization at Ferromagnetic Metal–Organic Heterojunctions: Interface Engineering for Efficient Spin Injection in Organic Spintronics. Advanced Functional Materials, 2014, 24, 4812-4821.	14.9	50
35	Energy level alignment and interactive spin polarization at organic/ferromagnetic metal interfaces for organic spintronics. Organic Electronics, 2014, 15, 1951-1957.	2.6	11
36	In Situ Formation of MoO ₃ in PEDOT:PSS Matrix: A Facile Way to Produce a Smooth and Less Hygroscopic Hole Transport Layer for Highly Stable Polymer Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2013, 3, 349-355.	19.5	118

Shengwei Shi

#	Article	IF	CITATIONS
37	Solution-processable graphene oxide as an efficient hole injection layer for high luminance organic light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 1708.	5.5	71
38	Soft Room-Temperature Ferromagnetism of Carbon-Implanted Amorphous Fe ₉₃ Zr ₇ Films. Applied Physics Express, 2013, 6, 053001.	2.4	15
39	High luminance organic light-emitting diodes with efficient multi-walled carbon nanotube hole injectors. Carbon, 2012, 50, 4163-4170.	10.3	25
40	Effect of Ca and buffer layers on the performance of organic light-emitting diodes based on tris-(8-hydroxyquinoline) aluminum. Thin Solid Films, 2010, 518, 4874-4878.	1.8	9
41	Study of molecular spin-crossover complex Fe(phen)2(NCS)2 thin films. Applied Physics Letters, 2009, 95, .	3.3	109
42	Investigation on internal electric field distribution of organic lightâ€emitting diodes (OLEDs) with Eu ₂ O ₃ buffer layer. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2641-2644.	1.8	8
43	Write-Once Read-Many-Times Memory Based on a Single Layer of Pentacene. IEEE Electron Device Letters, 2009, 30, 343-345.	3.9	9
44	Improved electron injection in organic light-emitting devices with a lithium acetylacetonate [Li(acac)]/aluminium bilayer cathode. Semiconductor Science and Technology, 2007, 22, 249-252.	2.0	10
45	Effect of NaCl buffer layer on the performance of organic light-emitting devices (OLEDs). EPJ Applied Physics, 2007, 40, 141-144.	0.7	10
46	NaCl/Ca/Al as an efficient cathode in organic light-emitting devices. Applied Surface Science, 2006, 252, 6337-6341.	6.1	17
47	Improved performance and stability by an Al/Ni bilayer cathode in organic light-emitting diodes. Applied Surface Science, 2006, 253, 1551-1554.	6.1	10
48	Efficient sodium chlorate/calcium/aluminum cathode for polymer light-emitting diodes. Thin Solid Films, 2005, 489, 262-265.	1.8	6
49	A pentacene-doped hole injection layer for organic light-emitting diodes. Semiconductor Science and Technology, 2005, 20, 1213-1216.	2.0	14