Carlos J Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3974135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmentally Tuning Asphalt Pavements Using Microencapsulated Phase Change Materials. Transportation Research Record, 2022, 2676, 158-175.	1.9	7
2	Spontaneous Emulsions: Adjusting Spontaneity and Phase Behavior by Hydrophilic–Lipophilic Difference-Guided Surfactant, Salt, and Oil Selection. Langmuir, 2022, 38, 4276-4286.	3.5	3
3	Fabrication of ceramic particles from preceramic polymers using stop flow lithography. Journal of the European Ceramic Society, 2021, 41, 3314-3320.	5.7	4
4	Impact of Saltwater Environments on the Coalescence of Oil-in-Water Emulsions Stabilized by an Anionic Surfactant. ACS ES&T Water, 2021, 1, 1702-1713.	4.6	12
5	Predicting Spontaneous Emulsification in Saltwater Environments Using the HLD Model. Langmuir, 2021, 37, 8866-8875.	3.5	5
6	Encapsulation of biobased fatty acid amides for phase change material applications. Journal of Renewable and Sustainable Energy, 2021, 13, .	2.0	2
7	Synthesis and Characterization of Fatty Acid Amides from Commercial Vegetable Oils and Primary Alkyl Amines for Phase Change Material Applications. ACS Sustainable Chemistry and Engineering, 2020, 8, 13683-13691.	6.7	19
8	Diffusion-Controlled Spontaneous Emulsification of Water-Soluble Oils via Micelle Swelling. Langmuir, 2020, 36, 7517-7527.	3.5	11
9	Altering the Crosslinking Density of Polyacrylamide Hydrogels to Increase Swelling Capacity and Promote Calcium Hydroxide Growth in Cement Voids. RILEM Bookseries, 2020, , 20-28.	0.4	5
10	Sustained Dye Release Using Poly(urea–urethane)/Cellulose Nanocrystal Composite Microcapsules. Langmuir, 2017, 33, 1521-1532.	3.5	28
11	Synthesis and Characterization of Microencapsulated Phase Change Materials with Poly(ureaâ^'urethane) Shells Containing Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2017, 9, 31763-31776.	8.0	95
12	CNC-loaded hydrogel particles generated from single- and double-emulsion drops. Green Materials, 2015, 3, 25-34.	2.1	6
13	Magnetic nanoparticle ink for RF integrated inductor applications. , 2014, , .		Ο
14	Assembly of Colloidal Silica Crystals Inside Double Emulsion Drops. Langmuir, 2013, 29, 11849-11857.	3.5	31
15	Altering Colloidal Surface Functionalization Using DNA Encapsulated Inside Monodisperse Gelatin Microsphere Templates. Langmuir, 2013, 29, 5534-5539.	3.5	10
16	Effect of Polyvinylpyrrolidone Additions on the Rheology of Aqueous, Highly Loaded Alumina Suspensions. Journal of the American Ceramic Society, 2013, 96, 1372-1382.	3.8	49
17	Electrochemical Biosensors Fabricated with Polyelectrolyte Microspheres. Journal of the Electrochemical Society, 2012, 159, B783-B788.	2.9	7
18	A Microfluidic Approach to Encapsulate Living Cells in Uniform Alginate Hydrogel Microparticles. Macromolecular Bioscience, 2012, 12, 946-951.	4.1	98

CARLOS J MARTINEZ

#	Article	IF	CITATIONS
19	Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer. Journal of the Royal Society Interface, 2010, 7, S461-73.	3.4	62
20	Microsensors in Dynamic Backgrounds: Toward Real-Time Breath Monitoring. IEEE Sensors Journal, 2010, 10, 137-144.	4.7	31
21	Bubble generation in microfluidic devices. Bubble Science, Engineering & Technology, 2009, 1, 40-52.	0.2	22
22	Designer emulsions using microfluidics. Materials Today, 2008, 11, 18-27.	14.2	623
23	The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors. Sensors and Actuators B: Chemical, 2007, 121, 282-294.	7.8	62
24	Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance. Journal of Nanoparticle Research, 2006, 8, 809-822.	1.9	41
25	Porous Tin Oxide Nanostructured Microspheres for Sensor Applications. Langmuir, 2005, 21, 7937-7944.	3.5	243
26	Interparticle Interactions and Direct Imaging of Colloidal Phases Assembled from Microsphereâ^'Nanoparticle Mixtures. Langmuir, 2005, 21, 9978-9989.	3.5	44
27	Controlled Electrophoretic Patterning of Polyaniline from a Colloidal Suspension. Journal of the American Chemical Society, 2005, 127, 4903-4909.	13.7	91
28	Effect of Morphology on the Response of Polyaniline-based Conductometric Gas Sensors: Nanofibers vs. Thin Films. Electrochemical and Solid-State Letters, 2004, 7, H44.	2.2	57
29	Stress development during drying of calcium carbonate suspensions containing carboxymethylcellulose and latex particles. Journal of Colloid and Interface Science, 2004, 272, 1-9.	9.4	51
30	Shape Evolution and Stress Development during Latexâ^'Silica Film Formation. Langmuir, 2002, 18, 4689-4698.	3.5	83
31	Rheological, Structural, and Stress Evolution of Aqueous Al2O3:Latex Tape-Cast Layers. Journal of the American Ceramic Society, 2002, 85, 2409-2416.	3.8	37
32	Impact of mixed surfactant composition on emulsion stability in saline environment: anionic and nonionic surfactants. Journal of Dispersion Science and Technology, 0, , 1-13.	2.4	3