Carlos J Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3974135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Designer emulsions using microfluidics. Materials Today, 2008, 11, 18-27.	14.2	623
2	Porous Tin Oxide Nanostructured Microspheres for Sensor Applications. Langmuir, 2005, 21, 7937-7944.	3.5	243
3	A Microfluidic Approach to Encapsulate Living Cells in Uniform Alginate Hydrogel Microparticles. Macromolecular Bioscience, 2012, 12, 946-951.	4.1	98
4	Synthesis and Characterization of Microencapsulated Phase Change Materials with Poly(ureaâ^'urethane) Shells Containing Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2017, 9, 31763-31776.	8.0	95
5	Controlled Electrophoretic Patterning of Polyaniline from a Colloidal Suspension. Journal of the American Chemical Society, 2005, 127, 4903-4909.	13.7	91
6	Shape Evolution and Stress Development during Latexâ^'Silica Film Formation. Langmuir, 2002, 18, 4689-4698.	3.5	83
7	The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors. Sensors and Actuators B: Chemical, 2007, 121, 282-294.	7.8	62
8	Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer. Journal of the Royal Society Interface, 2010, 7, S461-73.	3.4	62
9	Effect of Morphology on the Response of Polyaniline-based Conductometric Gas Sensors: Nanofibers vs. Thin Films. Electrochemical and Solid-State Letters, 2004, 7, H44.	2.2	57
10	Stress development during drying of calcium carbonate suspensions containing carboxymethylcellulose and latex particles. Journal of Colloid and Interface Science, 2004, 272, 1-9.	9.4	51
11	Effect of Polyvinylpyrrolidone Additions on the Rheology of Aqueous, Highly Loaded Alumina Suspensions. Journal of the American Ceramic Society, 2013, 96, 1372-1382.	3.8	49
12	Interparticle Interactions and Direct Imaging of Colloidal Phases Assembled from Microsphereâ^'Nanoparticle Mixtures. Langmuir, 2005, 21, 9978-9989.	3.5	44
13	Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance. Journal of Nanoparticle Research, 2006, 8, 809-822.	1.9	41
14	Rheological, Structural, and Stress Evolution of Aqueous Al2O3:Latex Tape-Cast Layers. Journal of the American Ceramic Society, 2002, 85, 2409-2416.	3.8	37
15	Microsensors in Dynamic Backgrounds: Toward Real-Time Breath Monitoring. IEEE Sensors Journal, 2010, 10, 137-144.	4.7	31
16	Assembly of Colloidal Silica Crystals Inside Double Emulsion Drops. Langmuir, 2013, 29, 11849-11857.	3.5	31
17	Sustained Dye Release Using Poly(urea–urethane)/Cellulose Nanocrystal Composite Microcapsules. Langmuir, 2017, 33, 1521-1532.	3.5	28
18	Bubble generation in microfluidic devices. Bubble Science, Engineering & Technology, 2009, 1, 40-52.	0.2	22

CARLOS J MARTINEZ

#	Article	IF	CITATIONS
19	Synthesis and Characterization of Fatty Acid Amides from Commercial Vegetable Oils and Primary Alkyl Amines for Phase Change Material Applications. ACS Sustainable Chemistry and Engineering, 2020, 8, 13683-13691.	6.7	19
20	Impact of Saltwater Environments on the Coalescence of Oil-in-Water Emulsions Stabilized by an Anionic Surfactant. ACS ES&T Water, 2021, 1, 1702-1713.	4.6	12
21	Diffusion-Controlled Spontaneous Emulsification of Water-Soluble Oils via Micelle Swelling. Langmuir, 2020, 36, 7517-7527.	3.5	11
22	Altering Colloidal Surface Functionalization Using DNA Encapsulated Inside Monodisperse Gelatin Microsphere Templates. Langmuir, 2013, 29, 5534-5539.	3.5	10
23	Electrochemical Biosensors Fabricated with Polyelectrolyte Microspheres. Journal of the Electrochemical Society, 2012, 159, B783-B788.	2.9	7
24	Environmentally Tuning Asphalt Pavements Using Microencapsulated Phase Change Materials. Transportation Research Record, 2022, 2676, 158-175.	1.9	7
25	CNC-loaded hydrogel particles generated from single- and double-emulsion drops. Green Materials, 2015, 3, 25-34.	2.1	6
26	Predicting Spontaneous Emulsification in Saltwater Environments Using the HLD Model. Langmuir, 2021, 37, 8866-8875.	3.5	5
27	Altering the Crosslinking Density of Polyacrylamide Hydrogels to Increase Swelling Capacity and Promote Calcium Hydroxide Growth in Cement Voids. RILEM Bookseries, 2020, , 20-28.	0.4	5
28	Fabrication of ceramic particles from preceramic polymers using stop flow lithography. Journal of the European Ceramic Society, 2021, 41, 3314-3320.	5.7	4
29	Impact of mixed surfactant composition on emulsion stability in saline environment: anionic and nonionic surfactants. Journal of Dispersion Science and Technology, 0, , 1-13.	2.4	3
30	Spontaneous Emulsions: Adjusting Spontaneity and Phase Behavior by Hydrophilic–Lipophilic Difference-Guided Surfactant, Salt, and Oil Selection. Langmuir, 2022, 38, 4276-4286.	3.5	3
31	Encapsulation of biobased fatty acid amides for phase change material applications. Journal of Renewable and Sustainable Energy, 2021, 13, .	2.0	2
32	Magnetic nanoparticle ink for RF integrated inductor applications. , 2014, , .		0