
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3974028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Embodiment in online psychotherapy: A qualitative study. Psychology and Psychotherapy: Theory, Research and Practice, 2022, 95, 191-211.	2.5	18
2	Enactive Ethics: Difference Becoming Participation. Topoi, 2022, 41, 241-256.	1.3	62
3	On symptom perception, placebo effects, and the Bayesian brain. Pain, 2022, 163, e604-e604.	4.2	3
4	A Test Run of the Free Energy Principle: All for naught?. Physics of Life Reviews, 2022, 41, 61-63.	2.8	2
5	Enactive becoming. Phenomenology and the Cognitive Sciences, 2021, 20, 783-809.	1.8	39
6	Bridges and hobby-horses: John Stewart's adventure of ideas. Adaptive Behavior, 2021, 29, 437-440.	1.9	1
7	Letting language be: reflections on enactive method. Filosofia Unisinos, 2021, 22, 117-124.	0.1	3
8	Critical integration in neural and cognitive systems: Beyond power-law scaling as the hallmark of soft assembly. Neuroscience and Biobehavioral Reviews, 2021, 123, 230-237.	6.1	7
9	Placebo From an Enactive Perspective. Frontiers in Psychology, 2021, 12, 660118.	2.1	14
10	Why do we build the wall?. Adaptive Behavior, 2020, 28, 37-38.	1.9	1
11	Comment: How Your Own Becoming Feels. Emotion Review, 2020, 12, 229-230.	3.4	4
12	Picturing Organisms and Their Environments: Interaction, Transaction, and Constitution Loops. Frontiers in Psychology, 2020, 11, 1912.	2.1	4
13	Rediscovering Richard Held: Activity and Passivity in Perceptual Learning. Frontiers in Psychology, 2020, 11, 844.	2.1	3
14	Learning to find spatially reversed sounds. Scientific Reports, 2020, 10, 4562.	3.3	4
15	Integrated information in the thermodynamic limit. Neural Networks, 2019, 114, 136-146.	5.9	8
16	Process and Individuation: The Development of Sensorimotor Agency. Human Development, 2019, 63, 202-226.	2.0	14
17	Embodied Coordination and Psychotherapeutic Outcome: Beyond Direct Mappings. Frontiers in Psychology, 2018, 9, 1257.	2.1	14

18 Integrated Information and Autonomy in the Thermodynamic Limit. , 2018, , .

1

#	Article	IF	CITATIONS
19	The sense of agency $\hat{a} \in \hat{a}$ a phenomenological consequence of enacting sensorimotor schemes. Phenomenology and the Cognitive Sciences, 2017, 16, 207-236.	1.8	73
20	Sensorimotor Life. , 2017, , .		219
21	Sensorimotor agency. , 2017, , .		63
22	What does the interactive brain hypothesis mean for social neuroscience? A dialogue. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150379.	4.0	70
23	A simulation study on air traffic control strategies. , 2016, , .		0
24	Deterministic Agent-Based Path Optimization by Mimicking the Spreading of Ripples. Evolutionary Computation, 2016, 24, 319-346.	3.0	42
25	Gilbert Simondon and the enactive conception of life and mind. , 2016, , .		2
26	Listening to a world transformed: Perception in an inverted acoustic field , 2016, , .		0
27	Sensorimotor strategies for recognizing geometrical shapes: a comparative study with different sensory substitution devices. Frontiers in Psychology, 2015, 6, 679.	2.1	20
28	From participatory sense-making to language: there and back again. Phenomenology and the Cognitive Sciences, 2015, 14, 1089-1125.	1.8	83
29	Toward an embodied science of intersubjectivity: widening the scope of social understanding research. Frontiers in Psychology, 2015, 6, 234.	2.1	20
30	Locked-in syndrome: a challenge for embodied cognitive science. Phenomenology and the Cognitive Sciences, 2015, 14, 517-542.	1.8	30
31	Spinal circuits can accommodate interaction torques during multijoint limb movements. Frontiers in Computational Neuroscience, 2014, 8, 144.	2.1	24
32	A genealogical map of the concept of habit. Frontiers in Human Neuroscience, 2014, 8, 522.	2.0	90
33	Learning to perceive in the sensorimotor approach: Piagetââ,¬â"¢s theory of equilibration interpreted dynamically. Frontiers in Human Neuroscience, 2014, 8, 551.	2.0	32
34	The worldly constituents of perceptual presence. Frontiers in Psychology, 2014, 5, 450.	2.1	9
35	Non-representational Sensorimotor Knowledge. Lecture Notes in Computer Science, 2014, , 21-31.	1.3	4
36	One step forward, two steps back – not the Tango: comment on Gallotti and Frith. Trends in Cognitive Sciences, 2013, 17, 303-304.	7.8	8

#	Article	IF	CITATIONS
37	A ripple-spreading algorithm to calculate the k best solutions to the project time management problem. , 2013, , .		4
38	Calculating Complete and Exact Pareto Front for Multiobjective Optimization: A New Deterministic Approach for Discrete Problems. IEEE Transactions on Cybernetics, 2013, 43, 1088-1101.	9.5	38
39	A ripple-spreading algorithm for route optimization. , 2013, , .		7
40	Enaction and Psychology. Review of General Psychology, 2013, 17, 203-209.	3.2	83
41	A Dynamical Systems Account of Sensorimotor Contingencies. Frontiers in Psychology, 2013, 4, 285.	2.1	83
42	A Ripple-Spreading Algorithm for the k Shortest Paths Problem. , 2012, , .		9
43	Unreliable Gut Feelings Can Lead to Correct Decisions: The Somatic Marker Hypothesis in Non-Linear Decision Chains. Frontiers in Psychology, 2012, 3, 384.	2.1	3
44	The interactive brain hypothesis. Frontiers in Human Neuroscience, 2012, 6, 163.	2.0	216
45	Enactivism is not interactionism. Frontiers in Human Neuroscience, 2012, 6, 345.	2.0	21
46	Behavioral Metabolution: The Adaptive and Evolutionary Potential of Metabolism-Based Chemotaxis. Artificial Life, 2011, 18, 1-25.	1.3	26
47	A Ripple-Spreading Genetic Algorithm for the Aircraft Sequencing Problem. Evolutionary Computation, 2011, 19, 77-106.	3.0	30
48	Deterministic ripple-spreading model for complex networks. Physical Review E, 2011, 83, 046123.	2.1	16
49	The enactive approach. Pragmatics and Cognition, 2011, 19, 1-36.	0.4	231
50	Application of Complex Network Theory and Genetic Algorithm in Airline Route Networks. Transportation Research Record, 2011, 2214, 50-58.	1.9	27
51	Toward Minimally Social Behavior: Social Psychology Meets Evolutionary Robotics. Lecture Notes in Computer Science, 2011, , 426-433.	1.3	12
52	Local Ultrastability in a Real System Based on Programmable Springs. Lecture Notes in Computer Science, 2011, , 91-98.	1.3	0
53	Chemo-ethology of an Adaptive Protocell. Lecture Notes in Computer Science, 2011, , 248-255.	1.3	4
54	Chapter 3 Overcoming Autopoiesis: An Enactive Detour on the Way from Life to Society. Advanced Series in Management, 2010, , 43-68.	1.2	14

#	Article	IF	CITATIONS
55	Can social interaction constitute social cognition?. Trends in Cognitive Sciences, 2010, 14, 441-447.	7.8	704
56	Spatial, temporal, and modulatory factors affecting GasNet evolvability in a visually guided robotics task. Complexity, 2010, 16, 35-44.	1.6	18
57	Spatial embedding and the structure of complex networks. Complexity, 2010, 16, 20-28.	1.6	21
58	A Minimal Model of Metabolism-Based Chemotaxis. PLoS Computational Biology, 2010, 6, e1001004.	3.2	52
59	Modelling social interaction as perceptual crossing: an investigation into the dynamics of the interaction process. Connection Science, 2010, 22, 43-68.	3.0	92
60	A review on ripple-spreading genetic algorithms for combinatorial optimization problems. , 2010, , .		4
61	Horizons for the Enactive Mind: Values, Social Interaction, and Play. , 2010, , 32-87.		138
62	A ripple-spreading Genetic Algorithm for the airport Gate Assignment Problem. , 2009, , .		5
63	Defining Agency: Individuality, Normativity, Asymmetry, and Spatio-temporality in Action. Adaptive Behavior, 2009, 17, 367-386.	1.9	267
64	Sociality and the life–mind continuity thesis. Phenomenology and the Cognitive Sciences, 2009, 8, 439-463.	1.8	74
65	Editorial: The social and enactive mind. Phenomenology and the Cognitive Sciences, 2009, 8, 409-415.	1.8	29
66	Extended Life. Topoi, 2009, 28, 9-21.	1.3	267
67	An efficient genetic algorithm with uniform crossover for air traffic control. Computers and Operations Research, 2009, 36, 245-259.	4.0	73
68	Integrating Autopoiesis and Behavior: An Exploration in Computational Chemo-ethology. Adaptive Behavior, 2009, 17, 387-401.	1.9	16
69	An Efficient Genetic Algorithm with Uniform Crossover for the Multi-Objective Airport Gate Assignment Problem. Studies in Computational Intelligence, 2009, , 71-89.	0.9	21
70	Environmental regulation can arise under minimal assumptions. Journal of Theoretical Biology, 2008, 251, 653-666.	1.7	27
71	How (not) to model autonomous behaviour. BioSystems, 2008, 91, 409-423.	2.0	52
72	Sensitivity to social contingency or stability of interaction? Modelling the dynamics of perceptual crossing. New Ideas in Psychology, 2008, 26, 278-294.	1.9	132

#	Article	IF	CITATIONS
73	Binary-Representation-Based Genetic Algorithm for Aircraft Arrival Sequencing and Scheduling. IEEE Transactions on Intelligent Transportation Systems, 2008, 9, 301-310.	8.0	86
74	A comprehensive fuzzâ€ruleâ€based selfâ€adaptive genetic algorithm. International Journal of Intelligent Computing and Cybernetics, 2008, 1, 94-109.	2.7	5
75	Regarding Compass Response Functions For Modeling Path Integration: Comment on "Evolving a Neural Model of Insect Path Integration― Adaptive Behavior, 2008, 16, 275-276.	1.9	Ο
76	Extended Homeostatic Adaptation: Improving the Link between Internal and Behavioural Stability. Lecture Notes in Computer Science, 2008, , 1-11.	1.3	8
77	Monostable Controllers for Adaptive Behaviour. Lecture Notes in Computer Science, 2008, , 103-112.	1.3	9
78	Stability of Coordination Requires Mutuality of Interaction in a Model of Embodied Agents. Lecture Notes in Computer Science, 2008, , 52-61.	1.3	17
79	Embodiment and Perceptual Crossing in 2D. Lecture Notes in Computer Science, 2008, , 83-92.	1.3	1
80	Genetic Algorithms for the Airport Gate Assignment: Linkage, Representation and Uniform Crossover. Studies in Computational Intelligence, 2008, , 361-387.	0.9	3
81	A Genetic Algorithm Based on Complex Networks Theory for the Management of Airline Route Networks. Studies in Computational Intelligence, 2008, , 495-505.	0.9	1
82	A Hybrid Genetic Algorithm for the Travelling Salesman Problem. Studies in Computational Intelligence, 2008, , 357-367.	0.9	2
83	Neural Noise Induces the Evolution of Robust Behaviour by Avoiding Non-functional Bifurcations. Lecture Notes in Computer Science, 2008, , 32-41.	1.3	4
84	Reconstructing the Cognitive World: The Next Step. Michael Wheeler. (2005, MIT Press.) ISBN 0-262-23240-5, 432 pages. \$35.00/£22.95. Artificial Life, 2007, 13, 203-206.	1.3	1
85	Spatially embedded random networks. Physical Review E, 2007, 76, 056115.	2.1	50
86	Toward Spinozist Robotics: Exploring the Minimal Dynamics of Behavioral Preference. Adaptive Behavior, 2007, 15, 359-376.	1.9	45
87	Multiairport Capacity Management: Genetic Algorithm With Receding Horizon. IEEE Transactions on Intelligent Transportation Systems, 2007, 8, 254-263.	8.0	32
88	Participatory sense-making. Phenomenology and the Cognitive Sciences, 2007, 6, 485-507.	1.8	1,076
89	New Models for Old Questions: Evolutionary Robotics and the â€~A Not B' Error. Lecture Notes in Computer Science, 2007, , 1141-1150.	1.3	13
90	Increasing Complexity Can Increase Stability inÂa Self-Regulating Ecosystem. Lecture Notes in Computer Science, 2007, , 133-142.	1.3	4

#	Article	IF	CITATIONS
91	Adapting to Your Body. Lecture Notes in Computer Science, 2007, , 203-212.	1.3	6
92	Minimal Agency Detection of Embodied Agents. Lecture Notes in Computer Science, 2007, , 485-494.	1.3	20
93	Preliminary Investigations on the Evolvability of aÂNon spatial GasNet Model. Lecture Notes in Computer Science, 2007, , 966-975.	1.3	10
94	Neural Uncertainty and Sensorimotor Robustness. Lecture Notes in Computer Science, 2007, , 786-795.	1.3	4
95	Adaptation to Sensory Delays. Lecture Notes in Computer Science, 2007, , 193-202.	1.3	2
96	Spatial effects favour the evolution of niche construction. Theoretical Population Biology, 2006, 70, 387-400.	1.1	84
97	The Advantages of Evolving Perceptual Cues. Adaptive Behavior, 2006, 14, 147-156.	1.9	11
98	Spatially Constrained Networks and the Evolution of Modular Control Systems. Lecture Notes in Computer Science, 2006, , 546-557.	1.3	6
99	Biological Actuators Are Not Just Springs. Lecture Notes in Computer Science, 2006, , 89-100.	1.3	Ο
100	The contribution of active body movement to visual development in evolutionary robots. Neural Networks, 2005, 18, 656-665.	5.9	20
101	Autopoiesis, Adaptivity, Teleology, Agency. Phenomenology and the Cognitive Sciences, 2005, 4, 429-452.	1.8	481
102	Evolutionary Robotics: A New Scientific Tool for Studying Cognition. Artificial Life, 2005, 11, 79-98.	1.3	214
103	Evolving neural models of path integration. Journal of Experimental Biology, 2005, 208, 3349-3366.	1.7	59
104	Is an Embodied System Ever Purely Reactive?. Lecture Notes in Computer Science, 2005, , 252-261.	1.3	9
105	t for Two Linear Synergy Advances the Evolution of Directional Pointing Behaviour. Lecture Notes in Computer Science, 2005, , 262-271.	1.3	1
106	From the Inside Looking Out: Self Extinguishing Perceptual Cues and the Constructed Worlds of Animats. Lecture Notes in Computer Science, 2005, , 11-20.	1.3	3
107	Unbinding Biological Autonomy: Francisco Varela's Contributions to Artificial Life. Artificial Life, 2004, 10, 231-233.	1.3	15
108	The circular topology of rhythm in asynchronous random Boolean networks. BioSystems, 2004, 73, 141-152.	2.0	11

#	Article	IF	CITATIONS
109	Evolving spike-timing-dependent plasticity for single-trial learning in robots. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 2299-2319.	3.4	40
110	Cycles of Contingency: Developmental Systems and Evolution. Susan Oyama, Paul E. Griffiths, & Russell D. Gray (Eds.). (2000, MIT Press). \$50.00, 377 pages Artificial Life, 2002, 8, 219-222.	1.3	1
111	Adaptive Factors in the Evolution of Signaling Systems. , 2002, , 53-77.		4
112	Spike-Timing Dependent Plasticity for Evolved Robots. Adaptive Behavior, 2002, 10, 243-263.	1.9	33
113	Rhythmic and non-rhythmic attractors in asynchronous random Boolean networks. BioSystems, 2001, 59, 185-195.	2.0	43
114	The Mechanization of the Mind: On the Origins of Cognitive Science, Stefan Wermter (Ed.), Jean-Pierre Dupuy, translated by M.B. DeBevoise, Princeton University Press, 2000, \$29.95 / 19.95, 240 pp. ISBN: 0-691-02574-6. Cognitive Systems Research, 2001, 2, 291-295.	2.7	0
115	Artificial Life and Historical Processes. Lecture Notes in Computer Science, 2001, , 649-658.	1.3	6
116	Ecological Symmetry Breaking can Favour the Evolution of Altruism in an Action-response Game. Journal of Theoretical Biology, 2000, 203, 135-152.	1.7	15
117	The Design of Animal Communication. Adaptive Behavior, 2000, 8, 75-79.	1.9	0
118	Artificial Life: Discipline or Method? Report on a Debate Held at ECAL '99. Artificial Life, 2000, 6, 145-148.	1.3	2
119	Behavioral Coordination, Structural Congruence and Entrainment in a Simulation of Acoustically Coupled Agents. Adaptive Behavior, 2000, 8, 27-48.	1.9	56
120	A Little More than Kind and Less than Kin: The Unwarranted Use of Kin Selection in Spatial Models of Communication. Lecture Notes in Computer Science, 1999, , 504-513.	1.3	8
121	Behavioural Coordination in Acoustically Coupled Agents. Perspectives in Neural Computing, 1998, , 1097-1102.	0.1	0
122	An Investigation into the Evolution of Communication. Adaptive Behavior, 1997, 6, 285-324.	1.9	46
123	Constraints on body movement during visual development affect behavior of evolutionary robots. , 0, , ,		2
124	The Enactive Approach. , 0, , .		5
125	Laying down a forking path: Tensions between enaction and the free energy principle. Philosophy and the Mind Sciences, 0, 3, .	1.3	20