
Riikka Linnakoski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3973221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Blueâ€stain fungi isolated from freshly felled Scots pine logs in Poland, including <i>Leptographium sosnaicola</i> sp. nov. Forest Pathology, 2021, 51, e12672.	1.1	10
2	A new species in the Mycosphaerellaceae from Cecidomyiidae leaf galls on Avicennia marina in South Africa. Antonie Van Leeuwenhoek, 2021, 114, 515-526.	1.7	3
3	Armillaria root rot fungi host single-stranded RNA viruses. Scientific Reports, 2021, 11, 7336.	3.3	30
4	Filamentous Fungi and Yeasts Associated with Mites Phoretic on Ips typographus in Eastern Finland. Forests, 2021, 12, 743.	2.1	6
5	Inoculation success of Inonotus obliquus in living birch (Betula spp.). Forest Ecology and Management, 2021, 492, 119244.	3.2	7
6	Microbiome of forest tree insects. , 2021, , 327-355.		0
7	ls Decreased Xylem Sap Surface Tension Associated With Embolism and Loss of Xylem Hydraulic Conductivity in Pathogen-Infected Norway Spruce Saplings?. Frontiers in Plant Science, 2020, 11, 1090.	3.6	5
8	Effect of Strain, Wood Substrate and Cold Treatment on the Yield and β-Glucan Content of Ganoderma lucidum Fruiting Bodies. Molecules, 2020, 25, 4732.	3.8	8
9	Localization of (+)-Catechin in Picea abies Phloem: Responses to Wounding and Fungal Inoculation. Molecules, 2020, 25, 2952.	3.8	12
10	Effect of wood residues on the growth of Ganoderma lucidum. Karstenia, 2020, 58, 16-28.	0.4	4
11	Two new species of Ophiostomatales (Sordariomycetes) associated with the bark beetle Dryocoetes alni from Poland. MycoKeys, 2020, 68, 23-48.	1.9	5
12	Four new Ophiostoma species associated with conifer- and hardwood-infesting bark and ambrosia beetles from the Czech Republic and Poland. Antonie Van Leeuwenhoek, 2019, 112, 1501-1521.	1.7	8
13	Pathogens—The Hidden Face of Forest Invasions by Wood-Boring Insect Pests. Frontiers in Plant Science, 2019, 10, 90.	3.6	22
14	Ophiostomatales associated with wounds on hardwood trees in Poland. Plant Pathology, 2019, 68, 1407-1424.	2.4	5
15	Ophiostomatoid fungi associated with hardwood-infesting bark and ambrosia beetles in Poland: Taxonomic diversity and vector specificity. Fungal Ecology, 2019, 39, 152-167.	1.6	19
16	Cellulolytic activity of brown-rot <i>Antrodia sinuosa</i> at the initial stage of cellulose degradation. Holzforschung, 2019, 73, 673-680.	1.9	5
17	Editorial: Forest Health Under Climate Change: Effects on Tree Resilience, and Pest and Pathogen Dynamics. Frontiers in Plant Science, 2019, 10, 1157.	3.6	29
18	Taxonomy and phylogeny of the Leptographium olivaceum complex (Ophiostomatales, Ascomycota), including descriptions of six new species from China and Europe. MycoKeys, 2019, 60, 93-123.	1.9	9

Riikka Linnakoski

#	Article	IF	CITATIONS
19	Diversity of wood-inhabiting fungi in woodpecker nest cavities in southern Poland. Acta Mycologica, 2019, 54, .	0.3	9
20	Antiviral Agents From Fungi: Diversity, Mechanisms and Potential Applications. Frontiers in Microbiology, 2018, 9, 2325.	3.5	79
21	Can Leaf Water Content Be Estimated Using Multispectral Terrestrial Laser Scanning? A Case Study With Norway Spruce Seedlings. Frontiers in Plant Science, 2018, 9, 299.	3.6	24
22	Three new Leptographium spp. (Ophiostomatales) infecting hardwood trees in Norway and Poland. Antonie Van Leeuwenhoek, 2018, 111, 2323-2347.	1.7	8
23	Cadophora margaritata sp. nov. and other fungi associated with the longhorn beetles Anoplophora glabripennis and Saperda carcharias in Finland. Antonie Van Leeuwenhoek, 2018, 111, 2195-2211.	1.7	8
24	Diversity of Ophiostomatales species associated with conifer-infesting beetles in the Western Carpathians. European Journal of Forest Research, 2017, 136, 939-956.	2.5	23
25	Effects of water availability on a forestry pathosystem: fungal strain-specific variation in disease severity. Scientific Reports, 2017, 7, 13501.	3.3	20
26	Two new Leptographium spp. reveal an emerging complex of hardwood-infecting species in the Ophiostomatales. Antonie Van Leeuwenhoek, 2017, 110, 1537-1553.	1.7	12
27	Testing Projected Climate Change Conditions on the Endoconidiophora polonica / Norway spruce Pathosystem Shows Fungal Strain Specific Effects. Frontiers in Plant Science, 2017, 8, 883.	3.6	14
28	Seasonal Succession of Fungi Associated with Ips typographus Beetles and Their Phoretic Mites in an Outbreak Region of Finland. PLoS ONE, 2016, 11, e0155622.	2,5	32
29	Phylogenetic relationship of Japanese isolates belonging to the Grosmannia piceiperda complex (Ophiostomatales). Mycoscience, 2016, 57, 123-135.	0.8	5
30	The Ophiostoma clavatum species complex: a newly defined group in the Ophiostomatales including three novel taxa. Antonie Van Leeuwenhoek, 2016, 109, 987-1018.	1.7	22
31	Climate and wood quality have decayer-specific effects on fungal wood decomposition. Forest Ecology and Management, 2016, 360, 341-351.	3.2	25
32	Ophiostomatoid fungi and their roles in <i>Quercus robur</i> die-back in Tellermann forest, Russia. Silva Fennica, 2015, 49, .	1.3	9
33	MetsÃŧammen sinistõäienet ja niiden merkitys taudinaiheuttajina Lounais-VenõÇŤMetstieteen Aikakauskirja, 2015, 2015, .	0.0	0
34	Associations of Conifer-Infesting Bark Beetles and Fungi in Fennoscandia. Insects, 2012, 3, 200-227.	2.2	79
35	Endophytic fungi isolated from Khaya anthotheca in Ghana. Fungal Ecology, 2012, 5, 298-308.	1.6	30
36	Grosmannia and Leptographium spp. associated with conifer-infesting bark beetles in Finland and Russia, including Leptographium taigense sp. nov Antonie Van Leeuwenhoek, 2012, 102, 375-399.	1.7	43

3

Riikka Linnakoski

#	Article	IF	CITATIONS
37	Suomalaisten känmeköiden endofyyttiset sienet. Suomen Maataloustieteellisen Seuran Tiedote, 2012, , 1-4.	0.0	0
38	Bark beetle-associated fungi in Fennoscandia with special emphasis on species of Ophiostoma and Grosmannia. Dissertationes Forestales, 2011, 2011, .	0.1	8
39	Kaarnakuoriaisten kuljettamat sinistÃjĤenet Suomessa. Metstieteen Aikakauskirja, 2011, 2011, .	0.0	0
40	<l>Ophiostoma</l> spp. associated with pine- and spruce-infesting bark beetles in Finland and Russia. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2010, 25, 72-93.	4.4	82
41	<i>Ophiostoma denticiliatum</i> sp. nov. and other <i>Ophiostoma</i> species associated with the birch bark beetle in southern Norway. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2009, 23, 9-15.	4.4	26
42	Fungi, including Ophiostoma karelicum sp. nov., associated with Scolytus ratzeburgi infesting birch in Finland and Russia. Mycological Research, 2008, 112, 1475-1488.	2.5	39
43	MEASURING LEAF WATER CONTENT USING MULTISPECTRAL TERRESTRIAL LASER SCANNING. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3/W3, 81-85.	0.2	0