Hang-Wei Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3972877/publications.pdf

Version: 2024-02-01

266 papers 19,428 citations

70 h-index 125 g-index

271 all docs

271 docs citations

271 times ranked

13889 citing authors

#	Article	IF	CITATIONS
1	Plant Species–Driven Distribution of Individual Clades of Comammox Nitrospira in a Subtropical Estuarine Wetland. Microbial Ecology, 2023, 85, 209-220.	1.4	8
2	Niche specialization of comammox <i>Nitrospira</i> in terrestrial ecosystems: Oligotrophic or copiotrophic?. Critical Reviews in Environmental Science and Technology, 2023, 53, 161-176.	6.6	34
3	Tracing boron dynamics in agro-ecosystems using enriched (¹⁰ B, ¹¹ B) stable isotopic signatures: A centennial legacy. Archives of Agronomy and Soil Science, 2022, 68, 561-578.	1.3	2
4	Modified lignite and black coal reduce ammonia volatilization from cattle manure. Journal of Environmental Management, 2022, 301, 113807.	3.8	10
5	Attenuation of antibiotic resistance genes in livestock manure through vermicomposting via Protaetia brevitarsis and its fate in a soil-vegetable system. Science of the Total Environment, 2022, 807, 150781.	3.9	11
6	Differentiation of individual clusters of comammox Nitrospira in an acidic Ultisol following long-term fertilization. Applied Soil Ecology, 2022, 170, 104267.	2.1	15
7	Short-term cellulose addition decreases microbial diversity and network complexity in an Ultisol following 32-year fertilization. Agriculture, Ecosystems and Environment, 2022, 325, 107744.	2.5	20
8	Arbuscular mycorrhiza fungi increase soil denitrifier abundance relating to vegetation community. Applied Soil Ecology, 2022, 171, 104325.	2.1	2
9	Proximity to subsurface drip irrigation emitters altered soil microbial communities in two commercial processing tomato fields. Applied Soil Ecology, 2022, 171, 104315.	2.1	2
10	The end of hunger: fertilizers, microbes and plant productivity. Microbial Biotechnology, 2022, 15, 1050-1054.	2.0	22
11	Conversion of grassland to cropland altered soil nitrogen-related microbial communities at large scales. Science of the Total Environment, 2022, 816, 151645.	3.9	13
12	Livestock manure spiked with the antibiotic tylosin significantly altered soil protist functional groups. Journal of Hazardous Materials, 2022, 427, 127867.	6.5	9
13	Unravelling the ecological complexity of soil viromes: Challenges and opportunities. Science of the Total Environment, 2022, 812, 152217.	3.9	10
14	Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. Critical Reviews in Environmental Science and Technology, 2022, 52, 4308-4324.	6.6	52
15	Environmental filtering controls soil biodiversity in wet tropical ecosystems. Soil Biology and Biochemistry, 2022, 166, 108571.	4.2	3
16	Aridity decreases soil protistan network complexity and stability. Soil Biology and Biochemistry, 2022, 166, 108575.	4.2	26
17	Long-term application of swine manure and sewage sludge differently impacts antibiotic resistance genes in soil and phyllosphere. Geoderma, 2022, 411, 115698.	2.3	9
18	Spartina alterniflora invasion has a greater impact than non-native species, Phragmites australis and Kandelia obovata, on the bacterial community assemblages in an estuarine wetland. Science of the Total Environment, 2022, 822, 153517.	3.9	10

#	Article	IF	Citations
19	Resistance to bacterial wilt caused by Ralstonia solanacearum depends on the nutrient condition in soil and applied fertilizers: A meta-analysis. Agriculture, Ecosystems and Environment, 2022, 329, 107874.	2.5	7
20	Distribution of soil viruses across China and their potential role in phosphorous metabolism. Environmental Microbiomes, 2022, 17, 6.	2.2	17
21	The accumulation of microbial residues and plant lignin phenols are more influenced by fertilization in young than mature subtropical forests. Forest Ecology and Management, 2022, 509, 120074.	1.4	15
22	Climate warming increases the proportions of specific antibiotic resistance genes in natural soil ecosystems. Journal of Hazardous Materials, 2022, 430, 128442.	6.5	19
23	Organic fertilization regimes suppress fungal plant pathogens through modulating the resident bacterial and protistan communities., 2022, 1, 43-53.		3
24	Cross-biome antibiotic resistance decays after millions of years of soil development. ISME Journal, 2022, 16, 1864-1867.	4.4	8
25	Calling for comprehensive explorations between soil invertebrates and arbuscular mycorrhizas. Trends in Plant Science, 2022, 27, 793-801.	4.3	10
26	The Proportion of Soil-Borne Fungal Pathogens Increases with Elevated Organic Carbon in Agricultural Soils. MSystems, 2022, 7, e0133721.	1.7	12
27	Effect of straw incorporation and nitrification inhibitor on nitrous oxide emission in three cropland soils., 2022, 1, 132-141.		1
28	Fertilization has a greater effect than rhizosphere on community structures of comammox Nitrospira in an alkaline agricultural soil. Applied Soil Ecology, 2022, 175, 104456.	2.1	10
29	The overlap of soil and vegetable microbes drives the transfer of antibiotic resistance genes from manure-amended soil to vegetables. Science of the Total Environment, 2022, 828, 154463.	3.9	23
30	Nitrous oxide production pathways in Australian forest soils. Geoderma, 2022, 420, 115871.	2.3	4
31	Soil bacterial communities triggered by organic matter inputs associates with a high-yielding pear production. Soil, 2022, 8, 337-348.	2.2	7
32	Semi-solid state promotes the methane production during anaerobic co-digestion of chicken manure with corn straw comparison to wet and high-solid state. Journal of Environmental Management, 2022, 316, 115264.	3.8	9
33	Reduced pH is the primary factor promoting humic acid formation during hyperthermophilic pretreatment composting. Journal of Environmental Management, 2022, 316, 115215.	3.8	15
34	Natural selenium stress influences the changes of antibiotic resistome in seleniferous forest soils. Environmental Microbiomes, 2022, 17, 26.	2,2	8
35	Temperature has a strong impact on the abundance and community structure of comammox Nitrospira in an Ultisol. Journal of Soils and Sediments, 2022, 22, 2593-2603.	1.5	5
36	Diversity and potential biogeochemical impacts of viruses in bulk and rhizosphere soils. Environmental Microbiology, 2021, 23, 588-599.	1.8	62

3

#	Article	IF	CITATIONS
37	Impact of sulfate and iron oxide on bacterial community dynamics in paddy soil under alternate watering conditions. Journal of Hazardous Materials, 2021, 408, 124417.	6.5	23
38	Dissimilatory nitrate ammonification and N2 fixation helps maintain nitrogen nutrition in resource-limited rice paddies. Biology and Fertility of Soils, 2021, 57, 107-115.	2.3	14
39	Rare taxa maintain the stability of crop mycobiomes and ecosystem functions. Environmental Microbiology, 2021, 23, 1907-1924.	1.8	132
40	Manure application increases microbiome complexity in soil aggregate fractions: Results of an 18-year field experiment. Agriculture, Ecosystems and Environment, 2021, 307, 107249.	2.5	54
41	Deterministic selection dominates microbial community assembly in termite mounds. Soil Biology and Biochemistry, 2021, 152, 108073.	4.2	60
42	Microbial communities in crop phyllosphere and root endosphere are more resistant than soil microbiota to fertilization. Soil Biology and Biochemistry, 2021, 153, 108113.	4.2	81
43	Host selection shapes crop microbiome assembly and network complexity. New Phytologist, 2021, 229, 1091-1104.	3.5	349
44	Fertilization alters protistan consumers and parasites in cropâ€associated microbiomes. Environmental Microbiology, 2021, 23, 2169-2183.	1.8	52
45	Long-term nitrogen fertilization alters microbial community structure and denitrifier abundance in the deep vadose zone. Journal of Soils and Sediments, 2021, 21, 2394-2403.	1.5	9
46	Termite mounds reduce soil microbial diversity by filtering rare microbial taxa. Environmental Microbiology, 2021, 23, 2659-2668.	1.8	8
47	Potential of indigenous crop microbiomes for sustainable agriculture. Nature Food, 2021, 2, 233-240.	6.2	51
48	Biotic and abiotic factors distinctly drive contrasting biogeographic patterns between phyllosphere and soil resistomes in natural ecosystems. ISME Communications, 2021, 1, .	1.7	23
49	Fates and Use Efficiency of Nitrogen Fertilizer in Maize Cropping Systems and Their Responses to Technologies and Management Practices: A Global Analysis on Field $\langle \sup 15 \langle \sup \rangle$ N Tracer Studies. Earth's Future, 2021, 9, e2020EF001514.	2.4	34
50	Canonical ammonia oxidizers, rather than comammox Nitrospira, dominated autotrophic nitrification during the mineralization of organic substances in two paddy soils. Soil Biology and Biochemistry, 2021, 156, 108192.	4.2	28
51	Niche specialization of comammox Nitrospira clade A in terrestrial ecosystems. Soil Biology and Biochemistry, 2021, 156, 108231.	4.2	25
52	Plant Diversity Enhances Soil Fungal Diversity and Microbial Resistance to Plant Invasion. Applied and Environmental Microbiology, 2021, 87, .	1.4	27
53	Sorghum rhizosphere effects reduced soil bacterial diversity by recruiting specific bacterial species under low nitrogen stress. Science of the Total Environment, 2021, 770, 144742.	3.9	29
54	Termite mound formation reduces the abundance and diversity of soil resistomes. Environmental Microbiology, 2021, 23, 7661-7670.	1.8	7

#	Article	IF	CITATIONS
55	Host Species and Geography Differentiate Honeybee Gut Bacterial Communities by Changing the Relative Contribution of Community Assembly Processes. MBio, 2021, 12, e0075121.	1.8	29
56	Assembly processes lead to divergent soil fungal communities within and among 12 forest ecosystems along a latitudinal gradient. New Phytologist, 2021, 231, 1183-1194.	3.5	20
57	Agricultural land-use change and rotation system exert considerable influences on the soil antibiotic resistome in Lake Tai Basin. Science of the Total Environment, 2021, 771, 144848.	3.9	27
58	Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Science Advances, 2021, 7, .	4.7	83
59	Arbuscular mycorrhizal fungi and plant diversity drive restoration of nitrogenâ€cycling microbial communities. Molecular Ecology, 2021, 30, 4133-4146.	2.0	12
60	Generalist Taxa Shape Fungal Community Structure in Cropping Ecosystems. Frontiers in Microbiology, 2021, 12, 678290.	1.5	6
61	Specific protistan consumers and parasites are responsive to inorganic fertilization in rhizosphere and bulk soils. Journal of Soils and Sediments, 2021, 21, 3801-3812.	1.5	10
62	Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome, 2021, 9, 171.	4.9	164
63	Temporal response of ureolytic and ammonia-oxidizing microbes and pasture yield to urea and NBPT at Leigh Creek of Victoria in Australia. Applied Soil Ecology, 2021, 164, 103922.	2.1	2
64	Precipitation increases the abundance of fungal plant pathogens in <i>Eucalyptus</i> phyllosphere. Environmental Microbiology, 2021, 23, 7688-7700.	1.8	20
65	Distinct factors drive the diversity and composition of protistan consumers and phototrophs in natural soil ecosystems. Soil Biology and Biochemistry, 2021, 160, 108317.	4.2	34
66	Divergent responses of wetland methane emissions to elevated atmospheric CO2 dependent on water table. Water Research, 2021, 205, 117682.	5. 3	8
67	Seasonal dynamics of soil microbial diversity and functions along elevations across the treeline. Science of the Total Environment, 2021, 794, 148644.	3.9	22
68	Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. Environment International, 2021, 156, 106749.	4.8	116
69	Ammonia-oxidizing bacteria play an important role in nitrification of acidic soils: A meta-analysis. Geoderma, 2021, 404, 115395.	2.3	27
70	Soil organic carbon and total nitrogen predict large-scale distribution of soil fungal communities in temperate and alpine shrub ecosystems. European Journal of Soil Biology, 2021, 102, 103270.	1.4	10
71	Influence of Legacy Mercury on Antibiotic Resistomes: Evidence from Agricultural Soils with Different Cropping Systems. Environmental Science & Enviro	4.6	19
72	Growth of comammox Nitrospira is inhibited by nitrification inhibitors in agricultural soils. Journal of Soils and Sediments, 2020, 20, 621-628.	1.5	38

#	Article	IF	Citations
73	Effects of repeated applications of urea with DMPP on ammonia oxidizers, denitrifiers, and non-targeted microbial communities of an agricultural soil in Queensland, Australia. Applied Soil Ecology, 2020, 147, 103392.	2.1	26
74	Manure Application Did Not Enrich Antibiotic Resistance Genes in Root Endophytic Bacterial Microbiota of Cherry Radish Plants. Applied and Environmental Microbiology, 2020, 86, .	1.4	25
75	Responses of ureolytic and nitrifying microbes to urease and nitrification inhibitors in selected agricultural soils in Victoria, Australia. Journal of Soils and Sediments, 2020, 20, 1309-1322.	1.5	13
76	The toxic factor of copper should be adjusted during the ecological risk assessment for soil bacterial community. Ecological Indicators, 2020, 111, 106072.	2.6	20
77	Large-scale patterns of soil antibiotic resistome in Chinese croplands. Science of the Total Environment, 2020, 712, 136418.	3.9	53
78	DNA stable isotope probing revealed no incorporation of 13CO2 into comammox Nitrospira but ammonia-oxidizing archaea in a subtropical acid soil. Journal of Soils and Sediments, 2020, 20, 1297-1308.	1.5	8
79	Climatic factors have unexpectedly strong impacts on soil bacterial \hat{l}^2 -diversity in 12 forest ecosystems. Soil Biology and Biochemistry, 2020, 142, 107699.	4.2	32
80	Arsenic and cadmium as predominant factors shaping the distribution patterns of antibiotic resistance genes in polluted paddy soils. Journal of Hazardous Materials, 2020, 389, 121838.	6.5	77
81	Limited effects of depth (0–80 cm) on communities of archaea, bacteria and fungi in paddy soil profiles. European Journal of Soil Science, 2020, 71, 955-966.	1.8	15
82	Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology and Biochemistry, 2020, 141, 107686.	4.2	247
83	Short-term application of mulch, roundup and organic herbicides did not affect soil microbial biomass or bacterial and fungal diversity. Chemosphere, 2020, 244, 125436.	4.2	17
84	Host identity determines plant associated resistomes. Environmental Pollution, 2020, 258, 113709.	3.7	23
85	Microbial regulation of natural antibiotic resistance: Understanding the protist-bacteria interactions for evolution of soil resistome. Science of the Total Environment, 2020, 705, 135882.	3.9	63
86	Characterization of the copper resistance mechanism and bioremediation potential of an Acinetobacter calcoaceticus strain isolated from copper mine sludge. Environmental Science and Pollution Research, 2020, 27, 7922-7933.	2.7	18
87	Oxytetracycline and Ciprofloxacin Exposure Altered the Composition of Protistan Consumers in an Agricultural Soil. Environmental Science & Eamp; Technology, 2020, 54, 9556-9563.	4.6	51
88	Lignite as additives accelerates the removal of antibiotic resistance genes during poultry litter composting. Bioresource Technology, 2020, 315, 123841.	4.8	19
89	Niche differentiation of clade A comammox Nitrospira and canonical ammonia oxidizers in selected forest soils. Soil Biology and Biochemistry, 2020, 149, 107925.	4.2	59
90	Niche differentiation of comammox Nitrospira and canonical ammonia oxidizers in soil aggregate fractions following 27-year fertilizations. Agriculture, Ecosystems and Environment, 2020, 304, 107147.	2.5	46

#	Article	IF	Citations
91	Irrigation and fertilization effects on arbuscular mycorrhizal fungi depend on growing season in a dryland maize agroecosystem. Pedobiologia, 2020, 83, 150687.	0.5	9
92	The influence of soil age on ecosystem structure and function across biomes. Nature Communications, 2020, 11, 4721.	5.8	47
93	Greater promotion of DNRA rates and nrfA gene transcriptional activity by straw incorporation in alkaline than in acidic paddy soils. Soil Ecology Letters, 2020, 2, 255-267.	2.4	10
94	Soil bacterial taxonomic diversity is critical to maintaining the plant productivity. Environment International, 2020, 140, 105766.	4.8	114
95	Grazing does not increase soil antibiotic resistome in two types of grasslands in Inner Mongolia, China. Applied Soil Ecology, 2020, 155, 103644.	2.1	8
96	Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes. Science of the Total Environment, 2020, 734, 139479.	3.9	56
97	Enhanced nitrogen retention by lignite during poultry litter composting. Journal of Cleaner Production, 2020, 277, 122422.	4.6	36
98	Microbial functional traits in phyllosphere are more sensitive to anthropogenic disturbance than in soil. Environmental Pollution, 2020, 265, 114954.	3.7	34
99	Antibiotic Resistance Genes in Antibiotic-Free Chicken Farms. Antibiotics, 2020, 9, 120.	1.5	14
100	Ecological drivers of methanotrophic communities in paddy soils around mercury mining areas. Science of the Total Environment, 2020, 721, 137760.	3.9	12
101	Silicon dioxide nanoparticles have contrasting effects on the temporal dynamics of sulfonamide and \hat{l}^2 -lactam resistance genes in soils amended with antibiotics. Environmental Research Letters, 2020, 15, 034001.	2.2	3
102	Industrial development as a key factor explaining variances in soil and grass phyllosphere microbiomes in urban green spaces. Environmental Pollution, 2020, 261, 114201.	3.7	19
103	High-solid anaerobic co-digestion of pig manure with lignite promotes methane production. Journal of Cleaner Production, 2020, 258, 120695.	4.6	20
104	Dissimilatory nitrate reduction to ammonium dominates soil nitrate retention capacity in subtropical forests. Biology and Fertility of Soils, 2020, 56, 785-797.	2.3	19
105	Fate of antibiotic resistance genes during high-solid anaerobic co-digestion of pig manure with lignite. Bioresource Technology, 2020, 303, 122906.	4.8	30
106	Fertilization changes soil microbiome functioning, especially phagotrophic protists. Soil Biology and Biochemistry, 2020, 148, 107863.	4.2	78
107	Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology and Evolution, 2020, 4, 210-220.	3.4	543
108	Contrasting patterns and drivers of soil bacterial and fungal diversity across a mountain gradient. Environmental Microbiology, 2020, 22, 3287-3301.	1.8	119

#	Article	IF	Citations
109	Viral metagenomics analysis and eight novel viral genomes identified from the Dushanzi mud volcanic soil in Xinjiang, China. Journal of Soils and Sediments, 2019, 19, 81-90.	1.5	10
110	Distributions and environmental drivers of archaea and bacteria in paddy soils. Journal of Soils and Sediments, 2019, 19, 23-37.	1.5	39
111	Distribution and Succession Feature of Antibiotic Resistance Genes Along a Soil Development Chronosequence in Urumqi No.1 Glacier of China. Frontiers in Microbiology, 2019, 10, 1569.	1.5	9
112	Multiple factors drive the abundance and diversity of the diazotrophic community in typical farmland soils of China. FEMS Microbiology Ecology, 2019, 95, .	1.3	54
113	Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers. Soil Biology and Biochemistry, 2019, 138, 107609.	4.2	143
114	Changes in soil nematode abundance and composition under elevated [CO2] and canopy warming in a rice paddy field. Plant and Soil, 2019, 445, 425-437.	1.8	23
115	Antibiotic resistance in urban green spaces mirrors the pattern of industrial distribution. Environment International, 2019, 132, 105106.	4.8	42
116	Plant evenness modulates the effect of plant richness on soil bacterial diversity. Science of the Total Environment, 2019, 662, 8-14.	3.9	19
117	Rare earth oxide nanoparticles promote soil microbial antibiotic resistance by selectively enriching antibiotic resistance genes. Environmental Science: Nano, 2019, 6, 456-466.	2.2	36
118	Autotrophic archaeal nitrification is preferentially stimulated by rice callus mineralization in a paddy soil. Plant and Soil, 2019, 445, 55-69.	1.8	19
119	Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environment International, 2019, 130, 104912.	4.8	278
120	Fungal richness contributes to multifunctionality in boreal forest soil. Soil Biology and Biochemistry, 2019, 136, 107526.	4.2	108
121	Plant-driven niche differentiation of ammonia-oxidizing bacteria and archaea in global drylands. ISME Journal, 2019, 13, 2727-2736.	4.4	47
122	Sorption mechanism and distribution of cadmium by different microbial species. Journal of Environmental Management, 2019, 237, 552-559.	3.8	40
123	Salinity as a predominant factor modulating the distribution patterns of antibiotic resistance genes in ocean and river beach soils. Science of the Total Environment, 2019, 668, 193-203.	3.9	54
124	Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome, 2019, 7, 33.	4.9	278
125	Adaptive responses of comammox Nitrospira and canonical ammonia oxidizers to long-term fertilizations: Implications for the relative contributions of different ammonia oxidizers to soil nitrogen cycling. Science of the Total Environment, 2019, 668, 224-233.	3.9	79
126	Lime and ammonium carbonate fumigation coupled with bioâ€organic fertilizer application steered banana rhizosphere to assemble a unique microbiome against Panama disease. Microbial Biotechnology, 2019, 12, 515-527.	2.0	23

#	Article	IF	Citations
127	Changes of the denitrifying communities in a multi-stage free water surface constructed wetland. Science of the Total Environment, 2019, 650, 1419-1425.	3.9	41
128	Dissimilatory nitrate reduction to ammonium dominates nitrate reduction in long-term low nitrogen fertilized rice paddies. Soil Biology and Biochemistry, 2019, 131, 149-156.	4.2	64
129	Ectomycorrhizal fungi inoculation alleviates simulated acid rain effects on soil ammonia oxidizers and denitrifiers in Masson pine forest. Environmental Microbiology, 2019, 21, 299-313.	1.8	24
130	Soil aggregate size and long-term fertilization effects on the function and community of ammonia oxidizers. Geoderma, 2019, 338, 107-117.	2.3	31
131	Contrasting Soil Bacterial and Fungal Communities between the Swamp and Upland in the Boreal Forest and their Biogeographic Distribution Patterns. Wetlands, 2019, 39, 441-451.	0.7	2
132	An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 2018, 627, 1377-1388.	3.9	846
133	Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Environmental Microbiology, 2018, 20, 3186-3200.	1.8	55
134	The effects of short term, long term and reapplication of biochar on soil bacteria. Science of the Total Environment, 2018, 636, 142-151.	3.9	105
135	The biogeography of fungal communities in paddy soils is mainly driven by geographic distance. Journal of Soils and Sediments, 2018, 18, 1795-1805.	1.5	28
136	Intraspecies variation in a widely distributed tree species regulates the responses of soil microbiome to different temperature regimes. Environmental Microbiology Reports, 2018, 10, 167-178.	1.0	8
137	Responses of soil microbial community to nitrogen fertilizer and precipitation regimes in a semi-arid steppe. Journal of Soils and Sediments, 2018, 18, 762-774.	1.5	27
138	Diversity and Distribution Characteristics of Viruses in Soils of a Marine-Terrestrial Ecotone in East China. Microbial Ecology, 2018, 75, 375-386.	1.4	14
139	Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils. Science of the Total Environment, 2018, 612, 1300-1310.	3.9	190
140	New insights into the role of microbial community composition in driving soil respiration rates. Soil Biology and Biochemistry, 2018, 118, 35-41.	4.2	134
141	Impacts of Projected Climate Warming and Wetting on Soil Microbial Communities in Alpine Grassland Ecosystems of the Tibetan Plateau. Microbial Ecology, 2018, 75, 1009-1023.	1.4	18
142	Unraveling Microbial Communities Associated with Methylmercury Production in Paddy Soils. Environmental Science & Environmenta	4.6	106
143	Differentiated Mechanisms of Biochar Mitigating Straw-Induced Greenhouse Gas Emissions in Two Contrasting Paddy Soils. Frontiers in Microbiology, 2018, 9, 2566.	1.5	46
144	Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China. Microbiome, 2018, 6, 183.	4.9	109

#	Article	IF	Citations
145	Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures. Soil Biology and Biochemistry, 2018, 126, 91-102.	4.2	170
146	Niche separation of comammox Nitrospira and canonical ammonia oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition. Soil Biology and Biochemistry, 2018, 126, 114-122.	4.2	129
147	Manipulating the soil microbiome for improved nitrogen management. Microbiology Australia, 2018, 39, 24.	0.1	16
148	Nitrogen Addition Decreases Dissimilatory Nitrate Reduction to Ammonium in Rice Paddies. Applied and Environmental Microbiology, 2018, 84, .	1.4	39
149	Impacts of long-term nitrogen addition, watering and mowing on ammonia oxidizers, denitrifiers and plant communities in a temperate steppe. Applied Soil Ecology, 2018, 130, 241-250.	2.1	22
150	Short-term copper exposure as a selection pressure for antibiotic resistance and metal resistance in an agricultural soil. Environmental Science and Pollution Research, 2018, 25, 29314-29324.	2.7	20
151	Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change. Soil Biology and Biochemistry, 2017, 107, 208-217.	4.2	78
152	Effects of different agricultural wastes on the dissipation of PAHs and the PAH-degrading genes in a PAH-contaminated soil. Chemosphere, 2017, 172, 286-293.	4.2	44
153	Response of ammonia oxidizers and denitrifiers to repeated applications of a nitrification inhibitor and a urease inhibitor in two pasture soils. Journal of Soils and Sediments, 2017, 17, 974-984.	1.5	36
154	Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biology and Biochemistry, 2017, 110, 12-21.	4.2	202
155	Dryland forest management alters fungal community composition and decouples assembly of rootand soil-associated fungal communities. Soil Biology and Biochemistry, 2017, 109, 14-22.	4.2	39
156	Comparison of Archaeal Populations in Soil and Their Encapsulated Iron-Manganese Nodules in Four Locations Spanning from North to South China. Geomicrobiology Journal, 2017, 34, 811-822.	1.0	3
157	Responses of soil nitrous oxide production and abundances and composition of associated microbial communities to nitrogen and water amendment. Biology and Fertility of Soils, 2017, 53, 601-611.	2.3	61
158	Microbial nitrous oxide emissions in dryland ecosystems: mechanisms, microbiome and mitigation. Environmental Microbiology, 2017, 19, 4808-4828.	1.8	40
159	Time-dependent shifts in populations and activity of bacterial and archaeal ammonia oxidizers in response to liming in acidic soils. Soil Biology and Biochemistry, 2017, 112, 77-89.	4.2	44
160	Interactive effects of multiple climate change factors on ammonia oxidizers and denitrifiers in a temperate steppe. FEMS Microbiology Ecology, 2017, 93, .	1.3	28
161	Copper Pollution Increases the Resistance of Soil Archaeal Community to Changes in Water Regime. Microbial Ecology, 2017, 74, 877-887.	1.4	8
162	Effects of the nitrification inhibitor acetylene on nitrous oxide emissions and ammonia-oxidizing microorganisms of different agricultural soils under laboratory incubation conditions. Applied Soil Ecology, 2017, 119, 80-90.	2.1	22

#	Article	IF	CITATIONS
163	Genetic and functional diversity of ubiquitous DNA viruses in selected Chinese agricultural soils. Scientific Reports, 2017, 7, 45142.	1.6	31
164	The effect of temperature and moisture on the source of N2O and contributions from ammonia oxidizers in an agricultural soil. Biology and Fertility of Soils, 2017, 53, 141-152.	2.3	69
165	Effects of the nitrification inhibitor dicyandiamide (DCD) on N2Oemissions and the abundance of nitrifiers and denitrifiers in two contrasting agricultural soils. Journal of Soils and Sediments, 2017, 17, 1635-1643.	1.5	22
166	Long-Term Nickel Contamination Increases the Occurrence of Antibiotic Resistance Genes in Agricultural Soils. Environmental Science & Environmental Sc	4.6	240
167	Long-term manure application increased the levels of antibiotics and antibiotic resistance genes in a greenhouse soil. Applied Soil Ecology, 2017, 121, 193-200.	2.1	84
168	Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environmental Pollution, 2017, 231, 1621-1632.	3.7	166
169	Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. Journal of Soils and Sediments, 2017, 17, 2709-2717.	1.5	194
170	Harnessing microbiomeâ€based biotechnologies for sustainable mitigation of nitrous oxide emissions. Microbial Biotechnology, 2017, 10, 1226-1231.	2.0	14
171	Nitrifierâ€induced denitrification is an important source of soil nitrous oxide and can be inhibited by a nitrification inhibitor 3,4â€dimethylpyrazole phosphate. Environmental Microbiology, 2017, 19, 4851-4865.	1.8	75
172	Fungal networks serve as novel ecological routes for enrichment and dissemination of antibiotic resistance genes as exhibited by microcosm experiments. Scientific Reports, 2017, 7, 15457.	1.6	20
173	Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Molecular Ecology, 2017, 26, 6608-6620.	2.0	92
174	Unique community structure of viruses in a glacier soil of the Tianshan Mountains, China. Journal of Soils and Sediments, 2017, 17, 852-860.	1.5	9
175	Temporal dynamics of fungal communities in soybean rhizosphere. Journal of Soils and Sediments, 2017, 17, 491-498.	1.5	33
176	Contrasting response of two grassland soils to N addition and moisture levels: N2O emission and functional gene abundance. Journal of Soils and Sediments, 2017, 17, 384-392.	1.5	21
177	Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers. Frontiers in Microbiology, 2017, 8, 945.	1.5	76
178	Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities. Nature Ecology and Evolution, 2017, 1, 1339-1347.	3.4	70
179	Primary Succession of Nitrogen Cycling Microbial Communities Along the Deglaciated Forelands of Tianshan Mountain, China. Frontiers in Microbiology, 2016, 7, 1353.	1.5	21
180	Nitrification Is a Primary Driver of Nitrous Oxide Production in Laboratory Microcosms from Different Land-Use Soils. Frontiers in Microbiology, 2016, 7, 1373.	1.5	62

#	Article	IF	Citations
181	Fieldâ€based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. Environmental Microbiology, 2016, 18, 3896-3909.	1.8	216
182	Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems. Scientific Reports, 2016, 6, 19561.	1.6	50
183	Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. ISME Journal, 2016, 10, 2593-2604.	4.4	324
184	Effects of dicyandiamide and acetylene on N2O emissions and ammonia oxidizers in a fluvo-aquic soil applied with urea. Environmental Science and Pollution Research, 2016, 23, 23023-23033.	2.7	10
185	Longitudinal occurrence of methylmercury in terrestrial ecosystems of the Tibetan Plateau. Environmental Pollution, 2016, 218, 1342-1349.	3.7	10
186	Nitrogen fertiliser-induced changes in N2O emissions are attributed more to ammonia-oxidising bacteria rather than archaea as revealed using 1-octyne and acetylene inhibitors in two arable soils. Biology and Fertility of Soils, 2016, 52, 1163-1171.	2.3	65
187	Effects of 3,4-dimethylpyrazole phosphate (DMPP) on nitrification and the abundance and community composition of soil ammonia oxidizers in three land uses. Biology and Fertility of Soils, 2016, 52, 927-939.	2.3	56
188	Effects of Cellular Sorption on Mercury Bioavailability and Methylmercury Production by <i>Desulfovibrio desulfuricans</i> ND132. Environmental Science & Desulfovibrio desulfuricans ND132. Environmental Science & Desulfovibrio desulfuricans	4.6	78
189	Variability of heavy metal content in soils of typical Tibetan grasslands. RSC Advances, 2016, 6, 105398-105405.	1.7	10
190	Environmental Filtering Process Has More Important Roles than Dispersal Limitation in Shaping Large-Scale Prokaryotic Beta Diversity Patterns of Grassland Soils. Microbial Ecology, 2016, 72, 221-230.	1.4	28
191	Effects of the Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate on Nitrification and Nitrifiers in Two Contrasting Agricultural Soils. Applied and Environmental Microbiology, 2016, 82, 5236-5248.	1.4	90
192	Copper pollution decreases the resistance of soil microbial community to subsequent dry–rewetting disturbance. Journal of Environmental Sciences, 2016, 39, 155-164.	3.2	21
193	Influence of rice straw amendment on mercury methylation and nitrification in paddy soils. Environmental Pollution, 2016, 209, 53-59.	3.7	56
194	Species identity of biocrust-forming lichens drives the response of soil nitrogen cycle to altered precipitation frequency and nitrogen amendment. Soil Biology and Biochemistry, 2016, 96, 128-136.	4.2	40
195	Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia. Environmental Pollution, 2016, 211, 48-57.	3.7	78
196	Temporal changes of antibiotic-resistance genes and bacterial communities in two contrasting soils treated with cattle manure. FEMS Microbiology Ecology, 2016, 92, fiv169.	1.3	108
197	Effects of climate warming and elevated CO 2 on autotrophic nitrification and nitrifiers in dryland ecosystems. Soil Biology and Biochemistry, 2016, 92, 1-15.	4.2	92
198	The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors. Frontiers in Microbiology, 2015, 6, 938.	1.5	70

#	Article	IF	Citations
199	Soil pH determines the alpha diversity but not beta diversity of soil fungal community along altitude in a typical Tibetan forest ecosystem. Journal of Soils and Sediments, 2015, 15, 1224-1232.	1.5	112
200	Insight into the Modulation of Dissolved Organic Matter on Microbial Remediation of PAH-Contaminated Soils. Microbial Ecology, 2015, 70, 400-410.	1.4	17
201	Long-term nickel exposure altered the bacterial community composition but not diversity in two contrasting agricultural soils. Environmental Science and Pollution Research, 2015, 22, 10496-10505.	2.7	24
202	Field-based evidence for consistent responses of bacterial communities to copper contamination in two contrasting agricultural soils. Frontiers in Microbiology, 2015, 6, 31.	1.5	47
203	Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews, 2015, 39, 729-749.	3.9	530
204	Candidatus Brocadia and Candidatus Kuenenia predominated in anammox bacterial community in selected Chinese paddy soils. Journal of Soils and Sediments, 2015, 15, 1977-1986.	1.5	29
205	Paenibacillus tibetensis sp. nov., a psychrophilic bacterium isolated from alpine swamp meadow soil. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1583-1586.	0.8	5
206	Activity, abundance and community structure of anammox bacteria along depth profiles in three different paddy soils. Soil Biology and Biochemistry, 2015, 91, 212-221.	4.2	82
207	Bacterial composition and spatiotemporal variation in sediments of Jiaozhou Bay, China. Journal of Soils and Sediments, 2015, 15, 732-744.	1.5	32
208	Water addition regulates the metabolic activity of ammonia oxidizers responding to environmental perturbations in dry subhumid ecosystems. Environmental Microbiology, 2015, 17, 444-461.	1.8	111
209	Altitudinal Distribution Patterns of Soil Bacterial and Archaeal Communities Along Mt. Shegyla on the Tibetan Plateau. Microbial Ecology, 2015, 69, 135-145.	1.4	166
210	Contrasting response of nitrification capacity in three agricultural soils to N addition during short-term incubation. Journal of Soils and Sediments, 2014, 14, 1861-1868.	1.5	13
211	Ammonia-Oxidizing Archaea Play a Predominant Role in Acid Soil Nitrification. Advances in Agronomy, 2014, , 261-302.	2.4	109
212	Analysis of the Microbial Community Structure by Monitoring an Hg Methylation Gene (<i>hgcA</i>) in Paddy Soils along an Hg Gradient. Applied and Environmental Microbiology, 2014, 80, 2874-2879.	1.4	119
213	Iron-Manganese Nodules Harbor Lower Bacterial Diversity and Greater Proportions of <i> Proteobacteria < /i > Compared to Bulk Soils in Four Locations Spanning from North to South China. Geomicrobiology Journal, 2014, 31, 562-577.</i>	1.0	17
214	Response of ammonia oxidizing microbes to the stresses of arsenic and copper in two acidic alfisols. Applied Soil Ecology, 2014, 77, 59-67.	2.1	39
215	Initial Copper Stress Strengthens the Resistance of Soil Microorganisms to a Subsequent Copper Stress. Microbial Ecology, 2014, 67, 931-941.	1.4	44
216	Response of ammonia-oxidizing archaea and bacteria to long-term industrial effluent-polluted soils, Gujarat, Western India. Environmental Monitoring and Assessment, 2014, 186, 4037-4050.	1.3	19

#	Article	IF	CITATIONS
217	Ammonia oxidizers and denitrifiers in response to reciprocal elevation translocation in an alpine meadow on the Tibetan Plateau. Journal of Soils and Sediments, 2014, 14, 1189-1199.	1.5	19
218	Shifts in the abundance and community structure of soil ammonia oxidizers in a wet sclerophyll forest under long-term prescribed burning. Science of the Total Environment, 2014, 470-471, 578-586.	3.9	25
219	Influence of nitrogen fertilization on soil ammonia oxidizer and denitrifier abundance, microbial biomass, and enzyme activities in an alpine meadow. Biology and Fertility of Soils, 2014, 50, 703-713.	2.3	84
220	Response of bacterial pdo1, nah, and C12O genes to aged soil PAH pollution in a coke factory area. Environmental Science and Pollution Research, 2014, 21, 9754-9763.	2.7	36
221	Frontiers in the microbial processes of ammonia oxidation in soils and sediments. Journal of Soils and Sediments, 2014, 14, 1023-1029.	1.5	49
222	Abundance and community structure of ammonia-oxidizing <i>Archaea</i> and <i>Bacteria</i> ii>in response to fertilization and mowing in a temperate steppe in Inner Mongolia. FEMS Microbiology Ecology, 2014, 89, 67-79.	1.3	61
223	Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on methanotroph abundance and methane uptake in a grazed pasture soil. Environmental Science and Pollution Research, 2013, 20, 8680-8689.	2.7	19
224	pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. Journal of Soils and Sediments, 2013, 13, 1439-1449.	1.5	219
225	Effects of land utilization patterns on soil microbial communities in an acid red soil based on DNA and PLFA analyses. Journal of Soils and Sediments, 2013, 13, 1223-1231.	1.5	20
226	Effects of super absorbent polymers on soil microbial properties and Chinese cabbage (Brassica) Tj ETQq0 0 0 rgl	BT /Qverlo 1.5	ck 10 Tf 50 3
227	Succession of plant and soil microbial communities with restoration of abandoned land in the Loess Plateau, China. Journal of Soils and Sediments, 2013, 13, 760-769.	1.5	46
228	Differential response of archaeal groups to land use change in an acidic red soil. Science of the Total Environment, 2013, 461-462, 742-749.	3.9	20
229	Immediate effects of nitrogen, phosphorus, and potassium amendments on the methanotrophic activity and abundance in a Chinese paddy soil under short-term incubation experiment. Journal of Soils and Sediments, 2013, 13, 189-196.	1.5	48
230	Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N2O emissions in a grazed pasture soil. Science of the Total Environment, 2013, 465, 125-135.	3.9	83
231	Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia. Applied Soil Ecology, 2013, 68, 36-45.	2.1	116
232	Contrasting Euryarchaeota communities between upland and paddy soils exhibited similar pH-impacted biogeographic patterns. Soil Biology and Biochemistry, 2013, 64, 18-27.	4.2	92
233	Ecological Drivers of Biogeographic Patterns of Soil Archaeal Community. PLoS ONE, 2013, 8, e63375.	1.1	39
234	Application of nano-scale secondary ion mass spectrometry to microbial ecology study. Acta Ecologica Sinica, 2013, 33, 348-357.	0.0	1

#	Article	IF	Citations
235	A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Frontiers in Microbiology, 2012, 3, 296.	1.5	191
236	Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biology and Biochemistry, 2012, 55, 146-154.	4.2	268
237	Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME Journal, 2012, 6, 1032-1045.	4.4	614
238	Distribution and diversity of archaeal communities in selected Chinese soils. FEMS Microbiology Ecology, 2012, 80, 146-158.	1.3	91
239	Abundance and community structure of ammonia-oxidizing bacteria and archaea in a temperate forest ecosystem under ten-years elevated CO2. Soil Biology and Biochemistry, 2012, 46, 163-171.	4.2	81
240	Abundance and community structure of ammonia-oxidizing archaea and bacteria in an acid paddy soil. Biology and Fertility of Soils, 2011, 47, 323-331.	2.3	102
241	Response of denitrification genes nirS, nirK, and nosZ to irrigation water quality in a Chinese agricultural soil. Environmental Science and Pollution Research, 2011, 18, 1644-1652.	2.7	70
242	Methanotroph abundance not affected by applications of animal urine and a nitrification inhibitor, dicyandiamide, in six grazed grassland soils. Journal of Soils and Sediments, 2011, 11, 432-439.	1.5	15
243	Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semiarid temperate grassland. Journal of Soils and Sediments, 2011, 11, 1243-1252.	1.5	100
244	Dynamics of sulfate reduction and sulfate-reducing prokaryotes in anaerobic paddy soil amended with rice straw. Biology and Fertility of Soils, 2010, 46, 283-291.	2.3	23
245	Effects of Cd and Pb on soil microbial community structure and activities. Environmental Science and Pollution Research, 2010, 17, 288-296.	2.7	304
246	Effects of mercury on the activity and community composition of soil ammonia oxidizers. Environmental Science and Pollution Research, 2010, 17, 1237-1244.	2.7	62
247	Cr(III) oxidation coupled with Mn(II) bacterial oxidation in the environment. Journal of Soils and Sediments, 2010, 10, 767-773.	1.5	21
248	Nitrous oxide emissions from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia-oxidizing bacteria and archaea. Journal of Soils and Sediments, 2010, 10, 943-954.	1.5	122
249	Soil type determines the abundance and community structure of ammonia-oxidizing bacteria and archaea in flooded paddy soils. Journal of Soils and Sediments, 2010, 10, 1510-1516.	1.5	82
250	Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiology Ecology, 2010, 72, 386-394.	1.3	419
251	Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China. Applied Soil Ecology, 2010, 46, 119-124.	2.1	158
252	Putative ammoniaâ€oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns. Environmental Microbiology Reports, 2010, 2, 304-312.	1.0	92

#	Article	IF	Citations
253	Autotrophic ammonia oxidation by soil thaumarchaea. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17240-17245.	3.3	305
254	Abundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes. Soil Biology and Biochemistry, 2009, 41, 687-694.	4.2	74
255	Linking soil bacterial diversity to ecosystem multifunctionality using backward-elimination boosted trees analysis. Journal of Soils and Sediments, 2009, 9, 547-554.	1.5	54
256	Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiology Ecology, 2009, 70, 208-217.	1.3	155
257	Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. Journal of Soils and Sediments, 2008, 8, 349-358.	1.5	170
258	Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices. Journal of Soils and Sediments, 2008, 8, 406-414.	1.5	90
259	Multivariate geostatistical analysis of heavy metals in topsoils from Beijing, China. Journal of Soils and Sediments, 2008, 8, 51-58.	1.5	136
260	Differences in soil bacterial diversity: driven by contemporary disturbances or historical contingencies?. ISME Journal, 2008, 2, 254-264.	4.4	182
261	Abundance and composition of ammoniaâ€oxidizing bacteria and ammoniaâ€oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology, 2008, 10, 1601-1611.	1.8	508
262	Ammoniaâ€oxidizing archaea: important players in paddy rhizosphere soil?. Environmental Microbiology, 2008, 10, 1978-1987.	1.8	340
263	Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China. Journal of Soils and Sediments, 2008, 8, 43-50.	1.5	177
264	Quantitative analyses of the abundance and composition of ammoniaâ€oxidizing bacteria and ammoniaâ€oxidizing archaea of a Chinese upland red soil under longâ€term fertilization practices. Environmental Microbiology, 2007, 9, 2364-2374.	1.8	877
265	Quantitative analyses of the abundance and composition of ammoniaâ€oxidizing bacteria and ammoniaâ€oxidizing archaea of a Chinese upland red soil under longâ€term fertilization practices. Environmental Microbiology, 2007, 9, 3152-3152.	1.8	36
266	Successional patterns of bacterial communities and their functions in shrimp aquaculture pond water across farming phases. Aquaculture Research, 0, , .	0.9	1