
## Edward N Pugh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3972648/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | G Proteins and Phototransduction. Annual Review of Physiology, 2002, 64, 153-187.                                                                                                                                                                                                                              | 13.1 | 593       |
| 2  | Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nature Reviews<br>Neuroscience, 2007, 8, 960-976.                                                                                                                                                                                 | 10.2 | 400       |
| 3  | Massive Light-Driven Translocation of Transducin between the Two Major Compartments of Rod Cells.<br>Neuron, 2002, 34, 95-106.                                                                                                                                                                                 | 8.1  | 334       |
| 4  | The Proteome of the Mouse Photoreceptor Sensory Cilium Complex. Molecular and Cellular Proteomics, 2007, 6, 1299-1317.                                                                                                                                                                                         | 3.8  | 310       |
| 5  | Physiological Features of the S- and M-cone Photoreceptors of Wild-type Mice from Single-cell<br>Recordings. Journal of General Physiology, 2006, 127, 359-374.                                                                                                                                                | 1.9  | 261       |
| 6  | Phototransduction, Dark Adaptation, and Rhodopsin Regeneration The Proctor Lecture. , 2006, 47, 5138.                                                                                                                                                                                                          |      | 230       |
| 7  | Light-driven translocation of signaling proteins in vertebrate photoreceptors. Trends in Cell Biology, 2006, 16, 560-568.                                                                                                                                                                                      | 7.9  | 202       |
| 8  | Cone-like Morphological, Molecular, and Electrophysiological Features of the Photoreceptors of theNrlKnockout Mouse. , 2005, 46, 2156.                                                                                                                                                                         |      | 190       |
| 9  | From candelas to photoisomerizations in the mouse eye by rhodopsin bleaching in situ and the<br>light-rearing dependence of the major components of the mouse ERG. Vision Research, 2004, 44,<br>3235-3251.                                                                                                    | 1.4  | 184       |
| 10 | Dark Light, Rod Saturation, and the Absolute and Incremental Sensitivity of Mouse Cone Vision.<br>Journal of Neuroscience, 2010, 30, 12495-12507.                                                                                                                                                              | 3.6  | 177       |
| 11 | The Gain of Rod Phototransduction. Neuron, 2000, 27, 525-537.                                                                                                                                                                                                                                                  | 8.1  | 176       |
| 12 | Mouse Cones Require an Arrestin for Normal Inactivation of Phototransduction. Neuron, 2008, 59, 462-474.                                                                                                                                                                                                       | 8.1  | 134       |
| 13 | Type 3 Deiodinase, a Thyroid-Hormone-Inactivating Enzyme, Controls Survival and Maturation of Cone<br>Photoreceptors. Journal of Neuroscience, 2010, 30, 3347-3357.                                                                                                                                            | 3.6  | 133       |
| 14 | Photoreceptors of Nrl â^'/â^' Mice Coexpress Functional S- and M-cone Opsins Having Distinct<br>Inactivation Mechanisms. Journal of General Physiology, 2005, 125, 287-304.                                                                                                                                    | 1.9  | 125       |
| 15 | In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased<br>light scattering of rod photoreceptors. Proceedings of the National Academy of Sciences of the<br>United States of America, 2017, 114, E2937-E2946.                                                        | 7.1  | 106       |
| 16 | The Retinal G Protein-coupled Receptor (RGR) Enhances Isomerohydrolase Activity Independent of<br>Light. Journal of Biological Chemistry, 2005, 280, 29874-29884.                                                                                                                                              | 3.4  | 84        |
| 17 | Quantification of the cytoplasmic spaces of living cells with EGFP reveals arrestin-EGFP to be in disequilibrium in dark adapted rod photoreceptors. Journal of Cell Science, 2004, 117, 3049-3059.                                                                                                            | 2.0  | 66        |
| 18 | <i>In vivo</i> wide-field multispectral scanning laser ophthalmoscopy–optical coherence tomography<br>mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping<br>of the mouse retinal and choroidal vasculature. Journal of Biomedical Optics, 2015, 20, 126005. | 2.6  | 64        |

Edward N Pugh

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Photoreceptor Layer Thickness Changes During Dark Adaptation Observed With Ultrahigh-Resolution Optical Coherence Tomography. , 2017, 58, 4632.                                                                                   |     | 61        |
| 20 | Calcium Feedback to cGMP Synthesis Strongly Attenuates Single-Photon Responses Driven by Long<br>Rhodopsin Lifetimes. Neuron, 2012, 76, 370-382.                                                                                  | 8.1 | 55        |
| 21 | Mole Quantity of RPE65 and Its Productivity in the Generation of 11-cis-Retinal from Retinyl Esters in the Living Mouse Eye. Biochemistry, 2005, 44, 9880-9888.                                                                   | 2.5 | 53        |
| 22 | Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina. Biomedical Optics Express, 2015, 6, 2191.                                               | 2.9 | 53        |
| 23 | A mouse M-opsin monochromat: Retinal cone photoreceptors have increased M-opsin expression when S-opsin is knocked out. Vision Research, 2011, 51, 447-458.                                                                       | 1.4 | 48        |
| 24 | RGS9 Concentration Matters in Rod Phototransduction. Biophysical Journal, 2009, 97, 1538-1547.                                                                                                                                    | 0.5 | 47        |
| 25 | In vivo imaging reveals transient microglia recruitment and functional recovery of photoreceptor signaling after injury. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16603-16612. | 7.1 | 46        |
| 26 | Directional optical coherence tomography reveals melanin concentration-dependent scattering properties of retinal pigment epithelium. Journal of Biomedical Optics, 2019, 24, 1.                                                  | 2.6 | 46        |
| 27 | Spatiotemporal cGMP Dynamics in Living Mouse Rods. Biophysical Journal, 2012, 102, 1775-1784.                                                                                                                                     | 0.5 | 40        |
| 28 | Rapid light-induced activation of retinal microglia in mice lacking Arrestin-1. Vision Research, 2014, 102, 71-79.                                                                                                                | 1.4 | 37        |
| 29 | Loss of cone function without degeneration in a novel Gnat2 knock-out mouse. Experimental Eye<br>Research, 2018, 171, 111-118.                                                                                                    | 2.6 | 30        |
| 30 | Cones Respond to Light in the Absence of Transducin  Subunit. Journal of Neuroscience, 2013, 33,<br>5182-5194.                                                                                                                    | 3.6 | 29        |
| 31 | The Photosensitivity of Rhodopsin Bleaching and Light-Induced Increases of Fundus Reflectance in<br>Mice Measured In Vivo With Scanning Laser Ophthalmoscopy. , 2016, 57, 3650.                                                   |     | 29        |
| 32 | Effect of a contact lens on mouse retinal in vivo imaging: Effective focal length changes and monochromatic aberrations. Experimental Eye Research, 2018, 172, 86-93.                                                             | 2.6 | 27        |
| 33 | Measurement of Diurnal Variation in Rod Outer Segment Length In Vivo in Mice With the OCT Optoretinogram. , 2020, 61, 9.                                                                                                          |     | 25        |
| 34 | Temporal speckle-averaging of optical coherence tomography volumes for in-vivo cellular resolution neuronal and vascular retinal imaging. Neurophotonics, 2019, 6, 1.                                                             | 3.3 | 25        |
| 35 | An S-Opsin Knock-In Mouse (F81Y) Reveals a Role for the Native Ligand 11-cis-Retinal in Cone Opsin<br>Biosynthesis. Journal of Neuroscience, 2012, 32, 8094-8104.                                                                 | 3.6 | 21        |
| 36 | The discovery of the ability of rod photoreceptors to signal single photons. Journal of General Physiology, 2018, 150, 383-388.                                                                                                   | 1.9 | 21        |

Edward N Pugh

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | cGMP in mouse rods: the spatiotemporal dynamics underlying single photon responses. Frontiers in<br>Molecular Neuroscience, 2015, 8, 6.                                                    | 2.9 | 20        |
| 38 | Effect of scanning beam size on the lateral resolution of mouse retinal imaging with SLO. Optics Letters, 2015, 40, 5830.                                                                  | 3.3 | 20        |
| 39 | Aperture phase modulation with adaptive optics: a novel approach for speckle reduction and structure extraction in optical coherence tomography. Biomedical Optics Express, 2019, 10, 552. | 2.9 | 17        |
| 40 | Genetic deletion of S-opsin prevents rapid cone degeneration in a mouse model of Leber congenital amaurosis. Human Molecular Genetics, 2015, 24, 1755-1763.                                | 2.9 | 16        |
| 41 | In Situ Morphologic and Spectral Characterization of Retinal Pigment Epithelium Organelles in Mice<br>Using Multicolor Confocal Fluorescence Imaging. , 2020, 61, 1.                       |     | 16        |
| 42 | Novel window for cancer nanotheranostics: non-invasive ocular assessments of tumor growth and nanotherapeutic treatment efficacy in vivo. Biomedical Optics Express, 2019, 10, 151.        | 2.9 | 13        |
| 43 | Bright flash response recovery of mammalian rods in vivo is rate limited by RGS9. Journal of General<br>Physiology, 2017, 149, 443-454.                                                    | 1.9 | 12        |
| 44 | Loss of the K+ channel Kv2.1 greatly reduces outward dark current and causes ionic dysregulation and degeneration in rod photoreceptors. Journal of General Physiology, 2021, 153, .       | 1.9 | 11        |
| 45 | Rhodopsin in the rod surface membrane regenerates more rapidly than bulk rhodopsin in the disc membranes <i>in vivo</i> . Journal of Physiology, 2014, 592, 2785-2797.                     | 2.9 | 6         |
| 46 | Photoreceptor disc morphogenesis: The classical evagination model prevails. Journal of Cell Biology, 2015, 211, 491-493.                                                                   | 5.2 | 5         |
| 47 | New Developments in Murine Imaging for Assessing Photoreceptor Degeneration In Vivo. Advances in Experimental Medicine and Biology, 2016, 854, 269-275.                                    | 1.6 | 2         |
| 48 | Visualization of chorioretinal vasculature in mice in vivo using a combined OCT/SLO imaging system. , 2016, , .                                                                            |     | 1         |
| 49 | Fluorescent scanning laser ophthalmoscopy for cellular resolution in vivo mouse retinal imaging: benefits and drawbacks of implementing adaptive optics. , 2016, , .                       |     | 0         |
| 50 | The mechanism of photon-like dark noise in rod photoreceptors. Journal of General Physiology, 2019,<br>151, 875-877.                                                                       | 1.9 | 0         |
| 51 | Photoreceptor disc morphogenesis: The classical evagination model prevails. Journal of General Physiology, 2015, 146, 1466OIA68.                                                           | 1.9 | 0         |
| 52 | Adaptive optics with combined optical coherence tomography and scanning laser ophthalmoscopy for in vivo mouse retina imaging. , 2018, , .                                                 |     | 0         |