
Remko Offringa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3972599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of cambium initiation and activity in Arabidopsis by the transcriptional regulator AHL15. Current Biology, 2022, 32, 1764-1775.e3.	3.9	21
2	<scp>miR156</scp> â€independent repression of the ageing pathway by longevityâ€promoting <scp>AHL</scp> proteins in Arabidopsis. New Phytologist, 2022, 235, 2424-2438.	7.3	7
3	An Arabidopsis AT-hook motif nuclear protein mediates somatic embryogenesis and coinciding genome duplication. Nature Communications, 2021, 12, 2508.	12.8	31
4	AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells. Current Biology, 2021, 31, 1918-1930.e5.	3.9	28
5	Intervessel pit membrane thickness best explains variation in embolism resistance amongst stems of <i>Arabidopsis thaliana</i> accessions. Annals of Botany, 2021, 128, 171-182.	2.9	23
6	Effects of Light Intensity on Root Development in a D-Root Growth System. Frontiers in Plant Science, 2021, 12, 778382.	3.6	12
7	The role of auxin transporters and receptors in adventitious rooting of Arabidopsis thaliana pre-etiolated flooded seedlings. Plant Science, 2020, 290, 110294.	3.6	28
8	Regulation of Early Plant Development by Red and Blue Light: A Comparative Analysis Between Arabidopsis thaliana and Solanum lycopersicum. Frontiers in Plant Science, 2020, 11, 599982.	3.6	16
9	PDK1 regulates auxin transport and Arabidopsis vascular development through AGC1 kinase PAX. Nature Plants, 2020, 6, 544-555.	9.3	37
10	A suppressor of axillary meristem maturation promotes longevity in flowering plants. Nature Plants, 2020, 6, 368-376.	9.3	32
11	Identification of root transcriptional responses to shoot illumination in Arabidopsis thaliana. Plant Molecular Biology, 2019, 101, 487-498.	3.9	14
12	Evolutionary and Functional Analysis of a Chara Plasma Membrane H+-ATPase. Frontiers in Plant Science, 2019, 10, 1707.	3.6	10
13	Comparative adventitious root development in pre-etiolated and flooded Arabidopsis hypocotyls exposed to different auxins. Plant Physiology and Biochemistry, 2018, 127, 161-168.	5.8	16
14	Auxin Homeostasis in Arabidopsis Ovules Is Anther-Dependent at Maturation and Changes Dynamically upon Fertilization. Frontiers in Plant Science, 2017, 8, 1735.	3.6	36
15	An INDEHISCENT-Controlled Auxin Response Specifies the Separation Layer in Early Arabidopsis Fruit. Molecular Plant, 2016, 9, 857-869.	8.3	26
16	Modelling the dynamics of polar auxin transport in inflorescence stems of <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2016, 67, 649-666.	4.8	15
17	Toward a Molecular Understanding of Plant Hormone Actions. Molecular Plant, 2016, 9, 1-3.	8.3	7
18	Auxin Binding Protein 1: A Red Herring After All?. Molecular Plant, 2015, 8, 1131-1134.	8.3	13

Remko Offringa

#	Article	IF	CITATIONS
19	Cytokinin Controls Polarity of PIN1-Dependent Auxin Transport during Lateral Root Organogenesis. Current Biology, 2014, 24, 1031-1037.	3.9	152
20	<scp>PIN</scp> â€driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals. New Phytologist, 2014, 203, 362-377.	7.3	107
21	Plasticity in Cell Division Patterns and Auxin Transport Dependency during in Vitro Embryogenesis in <i>Brassica napus</i> Â Â. Plant Cell, 2014, 26, 2568-2581.	6.6	35
22	Cell Polarity and Development. Journal of Integrative Plant Biology, 2013, 55, 786-788.	8.5	2
23	Phosphorylationâ€dependent Trafficking of Plasma Membrane Proteins in Animal and Plant Cells. Journal of Integrative Plant Biology, 2013, 55, 789-808.	8.5	42
24	Polar auxin transport: an early invention. Journal of Experimental Botany, 2012, 63, 4213-4218.	4.8	62
25	Auxin-induced Fruit Set in Capsicum annuum L. Requires Downstream Gibberellin Biosynthesis. Journal of Plant Growth Regulation, 2012, 31, 570-578.	5.1	24
26	Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nature Cell Biology, 2011, 13, 447-452.	10.3	295
27	PIN Auxin Efflux Carrier Polarity Is Regulated by PINOID Kinase-Mediated Recruitment into GNOM-Independent Trafficking in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2010, 21, 3839-3849.	6.6	165
28	Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development (Cambridge), 2010, 137, 3245-3255.	2.5	201
29	Phosphorylation of Conserved PIN Motifs Directs <i>Arabidopsis</i> PIN1 Polarity and Auxin Transport Â. Plant Cell, 2010, 22, 1129-1142.	6.6	237
30	BTB and TAZ domain scaffold proteins perform a crucial function in <i>Arabidopsis</i> development. Plant Journal, 2009, 58, 109-121.	5.7	90
31	Auxinâ€induced, SCF ^{TIR1} â€mediated polyâ€ubiquitination marks AUX/IAA proteins for degradation. Plant Journal, 2009, 59, 100-109.	5.7	175
32	A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature, 2009, 459, 583-586.	27.8	237
33	Plant evolution: AGC kinases tell the auxin tale. Trends in Plant Science, 2007, 12, 541-547.	8.8	128
34	Antagonistic Regulation of PIN Phosphorylation by PP2A and PINOID Directs Auxin Flux. Cell, 2007, 130, 1044-1056.	28.9	590
35	Apical–basal polarity: why plant cells don't standon their heads. Trends in Plant Science, 2006, 11, 12-14.	8.8	37
36	Maintenance of Embryonic Auxin Distribution for Apical-Basal Patterning by PIN-FORMED–Dependent Auxin Transport in Arabidopsis. Plant Cell, 2005, 17, 2517-2526.	6.6	135

REMKO OFFRINGA

#	Article	IF	CITATIONS
37	A PINOID-Dependent Binary Switch in Apical-Basal PIN Polar Targeting Directs Auxin Efflux. Science, 2004, 306, 862-865.	12.6	703
38	Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature, 2003, 426, 147-153.	27.8	1,672
39	PINOID-Mediated Signaling Involves Calcium-Binding Proteins. Plant Physiology, 2003, 132, 1623-1630.	4.8	161
40	Ectopic Expression of BABY BOOM Triggers a Conversion from Vegetative to Embryonic Growth. Plant Cell, 2002, 14, 1737-1749.	6.6	827
41	The PINOID protein kinase regulates organ development in <i>Arabidopsis</i> by enhancing polar auxin transport. Development (Cambridge), 2001, 128, 4057-4067.	2.5	408
42	An <i>Arabidopsis</i> Minute-like phenotype caused by a semi-dominant mutation in a <i>RIBOSOMAL PROTEIN S5</i> gene. Development (Cambridge), 2001, 128, 4289-4299.	2.5	267