
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3971959/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metalloproteinase inhibitors: biological actions and therapeutic opportunities. Journal of Cell Science, 2002, 115, 3719-3727.	2.0	1,029
2	The ADAM metalloproteinases. Molecular Aspects of Medicine, 2008, 29, 258-289.	6.4	955
3	Metalloproteinases in biology and pathology of the nervous system. Nature Reviews Neuroscience, 2001, 2, 502-511.	10.2	946
4	The ADAMTS metalloproteinases. Biochemical Journal, 2005, 386, 15-27.	3.7	682
5	Matrix metalloproteinases and diseases of the CNS. Trends in Neurosciences, 1998, 21, 75-80.	8.6	614
6	Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization. Journal of Cell Biology, 1988, 106, 441-450.	5.2	515
7	The regulation of matrix metalloproteinases and their inhibitors. International Journal of Biochemistry and Cell Biology, 2008, 40, 1362-1378.	2.8	474
8	The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biology, 2015, 16, 113.	8.8	471
9	Expression profiling of metalloproteinases and their inhibitors in cartilage. Arthritis and Rheumatism, 2004, 50, 131-141.	6.7	379
10	The role of chondrocyte senescence in osteoarthritis. Aging Cell, 2002, 1, 57-65.	6.7	349
11	MicroRNAs and the hallmarks of cancer. Oncogene, 2006, 25, 6170-6175.	5.9	344
12	Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Research, 2013, 15, R92.	5.0	320
13	Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. British Journal of Cancer, 1999, 79, 1828-1835.	6.4	313
14	Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain, 2003, 126, 2738-2749.	7.6	300
15	Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neuroscience Letters, 1997, 238, 53-56.	2.1	296
16	Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochemical and Photobiological Sciences, 2011, 10, 822-831.	2.9	295
17	Dysregulated Expression of Adamalysin-Thrombospondin Genes in Human Breast Carcinoma. Clinical Cancer Research, 2004, 10, 2429-2440.	7.0	272
18	Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerate human achilles tendon. Arthritis and Rheumatism, 2006, 54, 832-842.	6.7	258

#	Article	IF	CITATIONS
19	Matrix Metalloproteinase-9/Gelatinase B Is Required for Process Outgrowth by Oligodendrocytes. Journal of Neuroscience, 1999, 19, 8464-8475.	3.6	255
20	Metalloproteinases and their inhibitors in tumor angiogenesis. International Journal of Cancer, 2005, 115, 849-860.	5.1	251
21	NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood, 2017, 130, 1649-1660.	1.4	242
22	Tissue inhibitor of metalloproteinases (TIMP, aka EPA): Structure, control of expression and biological functions. , 1993, 59, 329-341.		241
23	Broad Antitumor and Antiangiogenic Activities of AG3340, a Potent and Selective MMP Inhibitor Undergoing Advanced Oncology Clinical Trials. Annals of the New York Academy of Sciences, 1999, 878, 236-270.	3.8	238
24	Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood, 2017, 129, 1320-1332.	1.4	226
25	The Comparative Role of Activator Protein 1 and Smad Factors in the Regulation of Timp-1 and MMP-1 Gene Expression by Transforming Growth Factor-β1. Journal of Biological Chemistry, 2003, 278, 10304-10313.	3.4	211
26	Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs). Journal of Cell Science, 2002, 115, 3427-3438.	2.0	207
27	Growth Factors and Cytokines Upregulate Gelatinase Expression in Bone Marrow CD34+ Cells and Their Transmigration Through Reconstituted Basement Membrane. Blood, 1999, 93, 3379-3390.	1.4	200
28	The modulation of matrix metalloproteinase and ADAM gene expression in human chondrocytes by interleukinâ€1 and oncostatin M: A timeâ€course study using realâ€ŧime quantitative reverse transcription–polymerase chain reaction. Arthritis and Rheumatism, 2002, 46, 961-967.	6.7	197
29	MMP-1 drives immunopathology in human tuberculosis and transgenic mice. Journal of Clinical Investigation, 2011, 121, 1827-1833.	8.2	197
30	Interleukin-6 Regulation of Matrix Metalloproteinase (MMP-2 and MMP-9) and Tissue Inhibitor of Metalloproteinase (TIMP-1) Expression in Malignant Non-Hodgkin's Lymphomas. Blood, 1999, 94, 2080-2089.	1.4	195
31	An Adverse Role for Matrix Metalloproteinase 12 after Spinal Cord Injury in Mice. Journal of Neuroscience, 2003, 23, 10107-10115.	3.6	181
32	Signalling and superinduction. Nature, 1991, 349, 747-748.	27.8	177
33	Altered Balance Between Matrix Metalloproteinases and Their Inhibitors in Experimental Biliary Fibrosis. American Journal of Pathology, 1998, 153, 1895-1902.	3.8	177
34	Determinants of Human B Cell Migration Across Brain Endothelial Cells. Journal of Immunology, 2003, 170, 4497-4505.	0.8	175
35	Matrix Metalloproteinase-8 Functions as a Metastasis Suppressor through Modulation of Tumor Cell Adhesion and Invasion. Cancer Research, 2008, 68, 2755-2763.	0.9	172
36	Murine tissue inhibitor of metalloproteinases—4 (<i>Timp</i> —4): cDNA isolation and expression in adult mouse tissues ¹ . FEBS Letters, 1997, 401, 213-217.	2.8	167

#	Article	IF	CITATIONS
37	Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs). Journal of Cell Science, 2002, 115, 3427-38.	2.0	166
38	Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. British Journal of Cancer, 2005, 92, 2171-2180.	6.4	163
39	Matrix metalloproteinases: protective roles in cancer. Journal of Cellular and Molecular Medicine, 2011, 15, 1254-1265.	3.6	160
40	Expression analysis of the entire MMP and TIMP gene families during mouse tissue development. FEBS Letters, 2004, 563, 129-134.	2.8	156
41	A growth-responsive gene (16C8) in normal mouse fibroblasts homologous to a human collagenase inhibitor with erythroid-potentiating activity: evidence for inducible and constitutive transcripts. Nucleic Acids Research, 1986, 14, 8863-8878.	14.5	154
42	Histone deacetylase inhibitors modulate metalloproteinase gene expression in chondrocytes and block cartilage resorption. Arthritis Research, 2005, 7, R503.	2.0	153
43	Combination of Tumor Necrosis Factor-α Ablation and Matrix Metalloproteinase Inhibition Prevents Heart Failure After Pressure Overload in Tissue Inhibitor of Metalloproteinase-3 Knock-Out Mice. Circulation Research, 2005, 97, 380-390.	4.5	151
44	Expression profile of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in mature human odontoblasts and pulp tissue. European Journal of Oral Sciences, 2003, 111, 117-127.	1.5	143
45	Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the mouse uterus during the peri-implantation period. , 1997, 21, 44-54.		139
46	Tissue Inhibitor of Metalloproteinases-1 Promotes Liver Metastasis by Induction of Hepatocyte Growth Factor Signaling. Cancer Research, 2007, 67, 8615-8623.	0.9	133
47	Expression of metalloproteinases and their inhibitors in primary pulmonary carcinomas. British Journal of Cancer, 1992, 66, 1188-1194.	6.4	131
48	Metalloproteinase inhibitor TIMP-1 affects hepatocyte cell cycle via HGF activation in murine liver regeneration. Hepatology, 2005, 41, 857-867.	7.3	131
49	Elevated membrane-type matrix metalloproteinases in gliomas revealed by profiling proteases and inhibitors in human cancer cells. Molecular Cancer Research, 2003, 1, 333-45.	3.4	131
50	Cutting Edge: The Metalloproteinase ADAM17/TNF-α-Converting Enzyme Regulates Proteolytic Shedding of the MHC Class I-Related Chain B Protein. Journal of Immunology, 2009, 182, 49-53.	0.8	130
51	Tenascin-C Stimulates Glioma Cell Invasion through Matrix Metalloproteinase-12. Cancer Research, 2006, 66, 11771-11780.	0.9	127
52	Key Metalloproteinases Are Expressed by Specific Cell Types in Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2004, 173, 5209-5218.	0.8	126
53	An elevated matrix metalloproteinase (MMP) in an animal model of multiple sclerosis is protective by affecting Th1/Th2 polarization. FASEB Journal, 2005, 19, 1668-1670.	0.5	125
54	Diverse and potent activities of HGF/SF in skin wound repair. Journal of Pathology, 2004, 203, 831-838.	4.5	122

#	Article	IF	CITATIONS
55	Transcriptional activity of the human tissue inhibitor of metalloproteinases 1 (TIMP-1) gene in fibroblasts involves elements in the promoter, exon 1 and intron 1. Biochemical Journal, 1997, 324, 611-617.	3.7	121
56	Developmentally programmed induction of differentiation inhibiting activity and the control of stem cell populations Genes and Development, 1990, 4, 2308-2318.	5.9	119
57	Comparative analysis of the expression patterns of metalloproteinases and their inhibitors in breast neoplasia, sporadic colorectal neoplasia, pulmonary carcinomas and malignant non-Hodgkin's lymphomas in humans. British Journal of Cancer, 1996, 73, 1401-1408.	6.4	118
58	Involvement of AP1 and PEA3 binding sites in the regulation of murine tissue inhibitor of metalloproteinases-1 (TIMP-1) transcription. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1171, 41-55.	2.4	108
59	Phosphorylation-dependent Interactions between ADAM15 Cytoplasmic Domain and Src Family Protein-tyrosine Kinases. Journal of Biological Chemistry, 2002, 277, 4999-5007.	3.4	108
60	TIMP-1 Deficiency Does Not Attenuate Interstitial Fibrosis in Obstructive Nephropathy. Journal of the American Society of Nephrology: JASN, 2001, 12, 736-748.	6.1	108
61	Metalloproteinases and their inhibitors in angiogenesis. Expert Reviews in Molecular Medicine, 2003, 5, 1-39.	3.9	101
62	Tumour-associated tenascin-C isoforms promote breast cancer cell invasion and growth by matrix metalloproteinase-dependent and independent mechanisms. Breast Cancer Research, 2009, 11, R24.	5.0	101
63	Expression of matrix metalloproteinases (MMP-2 and -9) and tissue inhibitors of metalloproteinases (TIMP-1 and -2) in acute myelogenous leukaemia blasts: comparison with normal bone marrow cells. British Journal of Haematology, 1999, 105, 402-411.	2.5	100
64	Expression Profiles and Clinical Correlations of Degradome Components in the Tumor Microenvironment of Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research, 2010, 16, 2022-2035.	7.0	100
65	Differential effects of transforming growth factor-β1 on the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in young and old human fibroblasts. Experimental Gerontology, 1996, 31, 207-223.	2.8	99
66	<i>Mycobacterium tuberculosis</i> , but Not Vaccine BCG, Specifically Upregulates Matrix Metalloproteinase-1. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 1596-1604.	5.6	97
67	Differential regulation of TIMP-1 and TIMP-2 mRNA expression in normal and Ha-ras-transformed murine fibroblasts. Gene, 1992, 117, 209-217.	2.2	96
68	Cytokine stimulated vascular cell adhesion molecule-1 (VCAM-1) ectodomain release is regulated by TIMP-3. Cardiovascular Research, 2005, 67, 39-49.	3.8	93
69	Proteases in cancer drug delivery. Advanced Drug Delivery Reviews, 2016, 97, 144-155.	13.7	93
70	ERK5 signalling in prostate cancer promotes an invasive phenotype. British Journal of Cancer, 2011, 104, 664-672.	6.4	90
71	Endocrinology and paracrinology: Roles of growth factors during peri-implantation development. Human Reproduction, 1995, 10, 712-718.	0.9	89
72	Hormonal Regulation of Matrix Metalloproteinase Inhibitors in Rat Granulosa Cells and Ovaries*. Endocrinology, 1991, 128, 1825-1832.	2.8	88

#	Article	IF	CITATIONS
73	Metalloproteinases are enriched in microglia compared with leukocytes and they regulate cytokine levels in activated microglia. Clia, 2007, 55, 516-526.	4.9	87
74	Regulation of tissue inhibitor of metalloproteinases-1 gene expression by cytokines and dexamethasone in rat hepatocyte primary cultures. Hepatology, 1993, 18, 1437-1442.	7.3	86
75	Localization of gelatinase-A and gelatinase-B mRNA and protein in human gliomas. Neuro-Oncology, 2000, 2, 145-150.	1.2	86
76	TGF-β1 Limits Plaque Growth, Stabilizes Plaque Structure, and Prevents Aortic Dilation in Apolipoprotein E-Null Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1251-1257.	2.4	86
77	Cell signalling and the control of gene transcription. Trends in Pharmacological Sciences, 1994, 15, 239-244.	8.7	85
78	The roles of ADAMTS metalloproteinases in tumorigenesis and metastasis. Frontiers in Bioscience - Landmark, 2011, 16, 1861.	3.0	83
79	ADAMTS8 and ADAMTS15 expression predicts survival in human breast carcinoma. International Journal of Cancer, 2006, 118, 1241-1247.	5.1	82
80	Differential expression and localization of TIMP-1 and TIMP-4 in human gliomas. British Journal of Cancer, 2001, 85, 55-63.	6.4	81
81	Metalloproteinase Expression in PMA-stimulated THP-1 Cells. Journal of Biological Chemistry, 2003, 278, 51340-51346.	3.4	80
82	Differential Expression of Matrix Metalloproteinases During Impaired Wound Healing of the Diabetes Mouse. Journal of Investigative Dermatology, 2002, 119, 91-98.	0.7	77
83	Altered Microenvironment Promotes Progression of Preinvasive Breast Cancer: Myoepithelial Expression of αvβ6 Integrin in DCIS Identifies High-risk Patients and Predicts Recurrence. Clinical Cancer Research, 2014, 20, 344-357.	7.0	77
84	Gene expression during the mammalian cell cycle. Biochimica Et Biophysica Acta: Reviews on Cancer, 1986, 865, 83-125.	7.4	74
85	HDAC-mediated control of ERK- and PI3K-dependent TGF-β-induced extracellular matrix-regulating genes. Matrix Biology, 2010, 29, 602-612.	3.6	74
86	Epithelial carcinogenesis: dynamic interplay between neoplastic cells and their microenvironment. Differentiation, 2002, 70, 610-623.	1.9	73
87	Activation of pro-(matrix metalloproteinase-2) (pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63ÂkDa active species. Biochemical Journal, 2001, 357, 107.	3.7	72
88	ldentification, regulation and role of tissue inhibitor of metalloproteinases-4 (TIMP-4) in human platelets. British Journal of Pharmacology, 2002, 137, 1330-1338.	5.4	71
89	Comprehensive profiling and localisation of the matrix metalloproteinases in urothelial carcinoma. British Journal of Cancer, 2006, 94, 569-577.	6.4	71
90	A study of mitochondrial and nuclear transcription with cloned cDNA probes. Experimental Cell Research, 1985, 157, 127-143.	2.6	70

#	Article	IF	CITATIONS
91	<i>Mycobacterium tuberculosis</i> Upregulates Microglial Matrix Metalloproteinase-1 and -3 Expression and Secretion via NF-lºB– and Activator Protein-1–Dependent Monocyte Networks. Journal of Immunology, 2010, 184, 6492-6503.	0.8	70
92	Oncostatin M Stimulates c-Fos to Bind a Transcriptionally Responsive AP-1 Element within the Tissue Inhibitor of Metalloproteinase-1 Promoter. Journal of Biological Chemistry, 1998, 273, 5211-5218.	3.4	68
93	Reprogramming of TIMP-1 and TIMP-3 expression profiles in brain microvascular endothelial cells and astrocytes in response to proinflammatory cytokines. FEBS Letters, 1999, 448, 9-14.	2.8	67
94	Avoiding spam in the proteolytic internet: Future strategies for anti-metastatic MMP inhibition. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 95-102.	4.1	65
95	Insights into the Mechanism of Quantum Dot-Sensitized Singlet Oxygen Production for Photodynamic Therapy. Journal of Physical Chemistry C, 2012, 116, 9334-9342.	3.1	65
96	Tissue inhibitor of metalloproteinases-3 is the major metalloproteinase inhibitor in the decidualizing murine uterus. Molecular Reproduction and Development, 1996, 45, 458-465.	2.0	64
97	Increase in gelatinase-specificity of matrix metalloproteinase inhibitors correlates with antimetastatic efficacy in a T-cell lymphoma model. Cancer Research, 2002, 62, 5543-50.	0.9	64
98	Extracellular matrix and matrix metalloproteinases in sciatic nerve. Journal of Neuroscience Research, 2003, 74, 417-429.	2.9	63
99	Differential expression of the ccn3 (nov) proto-oncogene in human prostate cell lines and tissues. Journal of Clinical Pathology, 2001, 54, 275-280.	1.9	62
100	Matrix Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-3 Are Key Regulators of Extracellular Matrix Degradation by Mouse Embryos1. Biology of Reproduction, 2001, 64, 1331-1337.	2.7	62
101	Identification of an initiator-like element essential for the expression of the tissue inhibitor of metalloproteinases-4 (Timp-4) gene. Biochemical Journal, 2002, 364, 89-99.	3.7	62
102	Membrane-Type 4 Matrix Metalloproteinase Promotes Breast Cancer Growth and Metastases. Cancer Research, 2006, 66, 5165-5172.	0.9	61
103	Distinct Functions of Natural ADAM-15 Cytoplasmic Domain Variants in Human Mammary Carcinoma. Molecular Cancer Research, 2008, 6, 383-394.	3.4	60
104	Collagenase-2 Deficiency or Inhibition Impairs Experimental Autoimmune Encephalomyelitis in Mice. Journal of Biological Chemistry, 2008, 283, 9465-9474.	3.4	60
105	Temporal and Spatial Expression of Tissue Inhibitors of Metalloproteinases during the Natural Ovulatory Cycle of the Mouse1. Biology of Reproduction, 1996, 55, 498-508.	2.7	58
106	High levels of gelatinase-B and active gelatinase-A in metastatic glioblastoma. Journal of Neuro-Oncology, 1998, 36, 21-29.	2.9	58
107	Activation of Key Profibrotic Mechanisms in Transgenic Fibroblasts Expressing Kinase-deficient Type II Transforming Growth Factor-β Receptor (TβRIIΔk). Journal of Biological Chemistry, 2005, 280, 16053-16065.	3.4	58
108	Quantitative Reverse Transcription–Polymerase Chain Reaction (RT-PCR): A Comparison of Primer-Dropping, Competitive, and Real-Time RT-PCRs. Analytical Biochemistry, 2002, 300, 269-273.	2.4	57

#	Article	IF	CITATIONS
109	ADAMTS-1 and syndecan-4 intersect in the regulation of cell migration and angiogenesis. Journal of Cell Science, 2020, 133, .	2.0	57
110	Insulin-like Growth Factor-II Regulates PTEN Expression in the Mammary Gland. Journal of Biological Chemistry, 2003, 278, 50422-50427.	3.4	56
111	Brk Protects Breast Cancer Cells from Autophagic Cell Death Induced by Loss of Anchorage. American Journal of Pathology, 2009, 175, 1226-1234.	3.8	56
112	TGF-β-Elicited Induction of Tissue Inhibitor of Metalloproteinases (TIMP)-3 Expression in Fibroblasts Involves Complex Interplay between Smad3, p38α, and ERK1/2. PLoS ONE, 2013, 8, e57474.	2.5	55
113	Sequence motifs of tissue inhibitor of metalloproteinases 2 (TIMP-2) determining progelatinase A (proMMP-2) binding and activation by membrane-type metalloproteinase 1 (MT1-MMP). Biochemical Journal, 2003, 372, 799-809.	3.7	52
114	Matrix Metalloproteinase 8 (Collagenase 2) Induces the Expression of Interleukins 6 and 8 in Breast Cancer Cells. Journal of Biological Chemistry, 2013, 288, 16282-16294.	3.4	52
115	Expression and Activity of Ovarian Tissue Inhibitors of Metalloproteinases during Pseudopregnancy in the Rat1. Biology of Reproduction, 1995, 53, 684-691.	2.7	51
116	MMP2 Activity is Critical for TGFβ2-Induced Matrix Contraction—Implications for Fibrosis. , 2012, 53, 4085.		51
117	Expression of Sorsby's Fundus Dystrophy Mutations in Human Retinal Pigment Epithelial Cells Reduces Matrix Metalloproteinase Inhibition and May Promote Angiogenesis. Journal of Biological Chemistry, 2002, 277, 13394-13400.	3.4	50
118	Matrix metalloproteinases mediate the dismantling of mesenchymal structures in the tadpole tail during thyroid hormoneâ€induced tail resorption. Developmental Dynamics, 2002, 223, 402-413.	1.8	50
119	Development of a Novel Tumor-Targeted Vascular Disrupting Agent Activated by Membrane-Type Matrix Metalloproteinases. Cancer Research, 2010, 70, 6902-6912.	0.9	49
120	Perivascular Cells Regulate Endothelial Membrane Type-1 Matrix Metalloproteinase Activity. Biochemical and Biophysical Research Communications, 2001, 282, 463-473.	2.1	47
121	TISSUE INHIBITOR OF METALLOPROTEINASE-3 IS UP-REGULATED BY TRANSFORMING GROWTH FACTOR- <i>β</i>)β) IN VITRO AND EXPRESSED IN FIBROBLASTIC FOCI IN VIVO IN IDIOPATHIC PULMONARY FIBROSIS. Experimental Lung Research, 2006, 32, 201-214.	1.2	47
122	Metalloproteinaseâ€dependent and â€independent processes contribute to inhibition of breast cancer cell migration, angiogenesis and liver metastasis by a disintegrin and metalloproteinase with thrombospondin motifsâ€15. International Journal of Cancer, 2015, 136, E14-26.	5.1	46
123	Monocyte-Astrocyte Networks Regulate Matrix Metalloproteinase Gene Expression and Secretion in Central Nervous System Tuberculosis In Vitro and In Vivo. Journal of Immunology, 2007, 178, 1199-1207.	0.8	45
124	Sorsby's fundus dystrophy tissue inhibitor of metalloproteinases-3 (TIMP-3) mutants have unimpaired matrix metalloproteinase inhibitory activities, but affect cell adhesion to the extracellular matrix. Matrix Biology, 2002, 21, 75-88.	3.6	44
125	Membrane type matrix metalloproteinases (MMPs) show differential expression in non-small cell lung cancer (NSCLC) compared to normal lung: Correlation of MMP-14 mRNA expression and proteolytic activity. European Journal of Cancer, 2007, 43, 1764-1771.	2.8	44
126	Reversible transdifferentiation of blood vascular endothelial cells to a lymphatic-like phenotype in vitro. Journal of Cell Science, 2010, 123, 3808-3816.	2.0	44

#	Article	IF	CITATIONS
127	Systemic Ablation of MMP-9 Triggers Invasive Growth and Metastasis of Pancreatic Cancer via Deregulation of IL6 Expression in the Bone Marrow. Molecular Cancer Research, 2016, 14, 1147-1158.	3.4	44
128	Expression of metalloproteinases and inhibitors in the differentiation of P19CL6 cells into cardiac myocytes. Biochemical and Biophysical Research Communications, 2004, 322, 759-765.	2.1	43
129	Intradermal air pouch leukocytosis as an in vivo test for nanoparticles. International Journal of Nanomedicine, 2013, 8, 4745.	6.7	42
130	Extracellular protease mRNAs are predominantly expressed in the stromal areas of microdissected mouse breast carcinomas. Carcinogenesis, 2005, 26, 1233-1240.	2.8	41
131	Telomere-dependent senescence. Nature Biotechnology, 1999, 17, 313-313.	17.5	37
132	Acute Depletion of Endothelial β3-Integrin Transiently Inhibits Tumor Growth and Angiogenesis in Mice. Circulation Research, 2014, 114, 79-91.	4.5	36
133	Banking of fresh-frozen prostate tissue: methods, validation and use. BJU International, 2003, 91, 315-324.	2.5	35
134	Pleiotropic functions of the tumor- and metastasis-suppressing matrix metalloproteinase-8 in mammary cancer in MMTV-PyMT transgenic mice. Breast Cancer Research, 2015, 17, 38.	5.0	35
135	Analysis of hypoxia-associated gene expression in prostate cancer: lysyl oxidase and glucose transporter-1 expression correlate with Gleason score. Oncology Reports, 1994, 20, 1561.	2.6	34
136	The Human Tissue Inhibitor of Metalloproteinases (TIMP)-1 Gene Contains Repressive Elements within the Promoter and Intron 1. Journal of Biological Chemistry, 2000, 275, 32664-32671.	3.4	34
137	G-helix of Maspin Mediates Effects on Cell Migration and Adhesion. Journal of Biological Chemistry, 2010, 285, 36285-36292.	3.4	34
138	Src Stimulates Fibroblast Growth Factor Receptor-2 Shedding by an ADAM15 Splice Variant Linked to Breast Cancer. Cancer Research, 2009, 69, 4573-4576.	0.9	30
139	DESNT: A Poor Prognosis Category of Human Prostate Cancer. European Urology Focus, 2018, 4, 842-850.	3.1	30
140	Loss of MMP-8 in ductal carcinoma in situ (DCIS)-associated myoepithelial cells contributes to tumour promotion through altered adhesive and proteolytic function. Breast Cancer Research, 2017, 19, 33.	5.0	29
141	Differential effects of histone deacetylase inhibitors on phorbol ester- and TGF-β1 induced murine tissue inhibitor of metalloproteinases-1 gene expression. FEBS Journal, 2005, 272, 1912-1926.	4.7	28
142	Variation in dermcidin expression in a range of primary human tumours and in hypoxic/oxidatively stressed human cell lines. British Journal of Cancer, 2008, 99, 126-132.	6.4	28
143	Activation of p38 and JNK MAPK pathways abrogates requirement for new protein synthesis for phorbol ester mediated induction of select MMP and TIMP genes. Matrix Biology, 2008, 27, 128-138.	3.6	28
144	Matrix Metalloproteinase 13 Is Induced in Fibroblasts in Polyomavirus Middle T Antigen-Driven Mammary Carcinoma without Influencing Tumor Progression. PLoS ONE, 2008, 3, e2959.	2.5	28

#	Article	IF	CITATIONS
145	The activity of a designer tissue inhibitor of metalloproteinases (TIMP)-1 against native membrane type 1 matrix metalloproteinase (MT1-MMP) in a cell-based environment. Cancer Letters, 2010, 290, 114-122.	7.2	26
146	Differential screening of a cDNA library with cDNA probes amplified in a heterologous host: isolation of murine GRP78 (BiP) and other serum-regulated low-abundance mRNAs. Gene, 1989, 82, 291-303.	2.2	25
147	Tissue inhibitor of metalloproteinases-2 (TIMP-2) in rat liver cells is increased by lipopolysaccharide and prostaglandin E2. FEBS Letters, 1995, 357, 33-36.	2.8	25
148	HIF1α drives chemokine factor pro-tumoral signaling pathways in acute myeloid leukemia. Oncogene, 2018, 37, 2676-2686.	5.9	25
149	The β3â€integrin endothelial adhesome regulates microtubuleâ€dependent cell migration. EMBO Reports, 2018, 19, .	4.5	25
150	MMP and TIMP Expression in Quiescent, Dividing, and Differentiating Human Lens Cells. , 2007, 48, 4192.		23
151	Suppressing β3-integrin triggers a neuropilin-1 dependent change in focal adhesion remodelling that can be targeted to block pathological angiogenesis. DMM Disease Models and Mechanisms, 2015, 8, 1105-19.	2.4	23
152	A Sequence-selective Single-strand DNA-binding Protein Regulates Basal Transcription of the Murine Tissue Inhibitor of Metalloproteinases-1 (Timp-1) Gene. Journal of Biological Chemistry, 1999, 274, 22197-22207.	3.4	22
153	Distinct Functionality of Tumor Cell–Derived Gelatinases during Formation of Liver Metastases. Molecular Cancer Research, 2008, 6, 341-351.	3.4	22
154	PI3Kδ and PI3KÎ ³ isoforms have distinct functions in regulating pro-tumoural signalling in the multiple myeloma microenvironment. Blood Cancer Journal, 2017, 7, e539-e539.	6.2	22
155	Laser-capture microdissection in prostate cancer research: establishment and validation of a powerful tool for the assessment of tumour–stroma interactions. BJU International, 2008, 101, 765-774.	2.5	20
156	TIMP-3 and endocrine therapy of breast cancer: an apoptosis connection emerges. Journal of Pathology, 2004, 202, 391-394.	4.5	19
157	ADAM15 mediates upregulation of Claudin-1 expression in breast cancer cells. Scientific Reports, 2019, 9, 12540.	3.3	18
158	Spontaneous immortalization of mouse embryo cells: Strain differences and changes in gene expression with particular reference to retroviral gag-pol genes. Experimental Cell Research, 1991, 192, 128-136.	2.6	17
159	mRNA profiling of the cancer degradome in oesophago–gastric adenocarcinoma. British Journal of Cancer, 2012, 107, 143-149.	6.4	17
160	ADAMs and protein disulfide isomerase: the key to regulated cell-surface protein ectodomain shedding?. Biochemical Journal, 2010, 428, e3-e5.	3.7	14
161	Inhibition of invasion and induction of apoptosis by selenium in human malignant brain tumour cells in vitro. International Journal of Oncology, 2007, 30, 1263.	3.3	13
162	Monitoring MMP and TIMP mRNA Expression by RT-PCR. , 2001, 151, 305-320.		12

#	Article	IF	CITATIONS
163	ADAMTS9, a member of the ADAMTS family, in Xenopus development. Gene Expression Patterns, 2018, 29, 72-81.	0.8	12
164	Interleukin-6 Regulation of Matrix Metalloproteinase (MMP-2 and MMP-9) and Tissue Inhibitor of Metalloproteinase (TIMP-1) Expression in Malignant Non-Hodgkin's Lymphomas. Blood, 1999, 94, 2080-2089.	1.4	12
165	Elevated Plasma Gelatinase A (MMP-2) Activity Is Associated with Quiescent Crohn's Disease. Annals of the New York Academy of Sciences, 1999, 878, 578-580.	3.8	11
166	ADAM and ADAMTS gene expression in native and wound healing human lens epithelial cells. Molecular Vision, 2010, 16, 2765-76.	1.1	11
167	Real-Time PCR Expression Profiling of MMPs and TIMPs. Methods in Molecular Biology, 2010, 622, 159-173.	0.9	9
168	A novel stratification framework for predicting outcome in patients with prostate cancer. British Journal of Cancer, 2020, 122, 1467-1476.	6.4	9
169	Localization of gelatinase-A and gelatinase-B mRNA and protein in human gliomas. Neuro-Oncology, 2000, 2, 145-150.	1.2	9
170	New insights into the plasticity of the endothelial phenotype. Biochemical Society Transactions, 2011, 39, 1639-1643.	3.4	8
171	Regulation of tissue inhibitor of metalloproteinases-1 gene expression by cytokines and dexamethasone in rat hepatocyte primary cultures. Hepatology, 1993, 18, 1437-1442.	7.3	8
172	Evidence that post-transcriptional changes in the expression of mitogen regulated protein accompany immortalization of mouse cells. Biochemical and Biophysical Research Communications, 1987, 147, 467-473.	2.1	7
173	Increase of Anti-Metastatic Efficacy by Selectivity- But Not Affinity-Optimization of Synthetic Serine Protease Inhibitors. Biological Chemistry, 2003, 384, 1515-25.	2.5	7
174	Genome-Wide Responses of Female Fruit Flies Subjected to Divergent Mating Regimes. PLoS ONE, 2013, 8, e68136.	2.5	7
175	The Tissue Inhibitors of Metalloproteinases (TIMPs): Biology and Regulation. , O, , 67-84.		7
176	Synthesis and stability of nuclear matrix proteins in resting and serum-stimulated swiss 3T3 cells. Journal of Cellular Physiology, 1986, 127, 388-396.	4.1	5
177	Matrix metalloproteinase-9 maps to the distal end of chromosome 2 in the mouse. , 1997, 21, 55-60.		5
178	Expression of MMPs and TIMPs in Mammalian Cells. , 2001, 151, 181-189.		5
179	A pBR322-derived Vector for Cloning Blunt-ended cDNA: Its Use to Detect Molecular Clones of Low-abundance mRNAs. DNA and Cell Biology, 1985, 4, 401-408.	5.2	4
180	Conformation-Specific Inhibitory Anti-MMP-7 Monoclonal Antibody Sensitizes Pancreatic Ductal Adenocarcinoma Cells to Chemotherapeutic Cell Kill. Cancers, 2021, 13, 1679.	3.7	4

#	Article	IF	CITATIONS
181	Research tissue banking in otolaryngology: organization, methods and uses, with reference to practical, ethical and legal issues. Journal of Laryngology and Otology, 2006, 120, 433-438.	0.8	3
182	Identification of novel peptide motifs in the serpin maspin that affect vascular smooth muscle cell function. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 336-344.	4.1	3
183	Biology and genetics of implantation. , 1997, 21, 1-5.		2
184	Proteases and Their Inhibitors in Gliomas. , 2002, , 241-268.		2
185	Prostate Single Nucleotide Polymorphism Provides a Crucial Clue to Cancer Aggression in Active Surveillance Patients. European Urology, 2016, 69, 229-230.	1.9	2
186	Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the mouse uterus during the periâ€implantation period. Genesis, 1997, 21, 44-54.	2.1	2
187	Analysis of ADAMTS Effects on Cell Adhesion and Migration. Methods in Molecular Biology, 2020, 2043, 179-193.	0.9	2
188	Bone Marrow Mesenchymal Stromal Cells Transfer Their Mitochondria to Acute Myeloid Leukaemia Blasts to Support Their Proliferation and Survival. Blood, 2016, 128, 772-772.	1.4	2
189	Specialized Plasmid Vectors for Cloning cDNA. , 1988, 10, 237-251.		1
190	Evaluation of effects caused by differentially spliced Ets-1 transcripts in fibroblasts. International Journal of Oncology, 2011, 39, 1073-82.	3.3	1
191	Matrix metalloproteinases: a dual role in breast cancer?. Breast Cancer Management, 2013, 2, 353-356.	0.2	1
192	Tissue inhibitor of metalloproteinases $\hat{a} \in 3$ is the major metalloproteinase inhibitor in the decidualizing murine uterus. Molecular Reproduction and Development, 1996, 45, 458-465.	2.0	1
193	TIMP-1 enhancer sequence – real or bacterial?. British Journal of Cancer, 2003, 89, 1812-1812.	6.4	0
194	The role of acetylation in Timp-1 regulation. International Journal of Experimental Pathology, 2008, 85, A18-A19.	1.3	0
195	Expression profiling of metalloproteinases and inhibitors in cartilage. International Journal of Experimental Pathology, 2008, 85, A23-A23.	1.3	0
196	Reversible transdifferentiation of blood vascular endothelial cells to a lymphatic-like phenotype in vitro. Development (Cambridge), 2010, 137, e2208-e2208.	2.5	0