Thom H Dunning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3971200/publications.pdf

Version: 2024-02-01

63 papers 57,394 citations

28 h-index

186265

62 g-index

64 all docs 64
docs citations

64 times ranked 20798 citing authors

#	Article	IF	CITATIONS
1	Spin-Coupled Generalized Valence Bond Theory: New Perspect i < /b>ves on the Electronic Structure of Molecules and Chemical Bonds. Journal of Physical Chemistry A, 2021, 125, 2021-2050.	2.5	26
2	From NWChem to NWChemEx: Evolving with the Computational Chemistry Landscape. Chemical Reviews, 2021, 121, 4962-4998.	47.7	39
3	Nature of the Bonding in the Bifluoride Anion, FHF [–] . Journal of Physical Chemistry Letters, 2021, 12, 7293-7298.	4.6	1
4	New Insights into the Remarkable Difference between CH ₅ [–] and SiH ₅ [–] . Journal of Physical Chemistry A, 2021, 125, 7414-7424.	2.5	2
5	Valence Bond and Molecular Orbital: Two Powerful Theories that Nicely Complement One Another. Journal of Chemical Education, 2021, 98, 3617-3620.	2.3	12
6	Orbital Hybridization in Modern Valence Bond Wave Functions: Methane, Ethylene, and Acetylene. Journal of Physical Chemistry A, 2020, 124, 204-214.	2.5	18
7	A cautionary tale: Problems in the valence-CASSCF description of the ground state (X1 \hat{l} £+) of BF. Journal of Chemical Physics, 2020, 153, 114113.	3.0	4
8	Resolving a puzzling anomaly in the spinâ€coupled generalized valence bond description of benzene. Journal of Computational Chemistry, 2020, 41, 1421-1426.	3.3	6
9	NWChem: Past, present, and future. Journal of Chemical Physics, 2020, 152, 184102.	3.0	425
10	The nature of the chemical bond and the role of non-dynamical and dynamical correlation in Be2. Journal of Chemical Physics, 2020, 152, 214111.	3.0	5
11	Spin-Coupled Generalized Valence Bond Description of Group 14 Species: The Carbon, Silicon and Germanium Hydrides, $XH < i > < i > n < i > < sub > < i > n < i > = 1 a e 4)$. Journal of Physical Chemistry A, 2019, 123, 2401-2419.	2.5	11
12	High level ab initio calculations on CIF n \hat{a} (n = $1\hat{a}$ \in 6): Recoupled pair bonding involving a closed-shell central ion. Computational and Theoretical Chemistry, 2017, 1116, 73-85.	2.5	4
13	Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Addition of Hydrogen Atoms. Journal of Physical Chemistry A, 2016, 120, 2720-2726.	2.5	9
14	Generalized Valence Bond Description of Chalcogen–Nitrogen Compounds. III. Why the NO–OH and NS–OH Bonds Are So Different. Journal of Physical Chemistry A, 2016, 120, 6846-6850.	2.5	7
15	Fundamental Aspects of Recoupled Pair Bonds. III. The Frustrated Recoupled Pair Bond in Oxygen Monofluoride. Journal of Physical Chemistry A, 2016, 120, 9607-9611.	2.5	5
16	Variations in the Nature of Triple Bonds: The N ₂ , HCN, and HC ₂ H Series. Journal of Physical Chemistry A, 2016, 120, 4526-4533.	2.5	13
17	Insights into the Electronic Structure of Molecules from Generalized Valence Bond Theory. Journal of Physical Chemistry A, 2016, 120, 1763-1778.	2.5	42
18	Reply to "Comment on â€~Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Bonding in O3 and SO2'― Journal of Physical Chemistry A, 2016, 120, 171-172.	2.5	2

#	Article	IF	CITATIONS
19	Fundamental aspects of recoupled pair bonds. I. Recoupled pair bonds in carbon and sulfur monofluoride. Journal of Chemical Physics, 2015, 142, 034113.	3.0	19
20	Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Bonding in O ₃ and SO ₂ . Journal of Physical Chemistry A, 2015, 119, 7683-7694.	2.5	37
21	Generalized Valence Bond Description of Chalcogen–Nitrogen Compounds. II. NO, F(NO), and H(NO). Journal of Physical Chemistry A, 2015, 119, 1456-1463.	2.5	13
22	Generalized Valence Bond Description of Chalcogen–Nitrogen Compounds. I. NS, F(NS), and H(NS). Journal of Physical Chemistry A, 2015, 119, 1446-1455.	2.5	13
23	Generalized Valence Bond Description of the Ground States (X ¹ Σ _{<i>g</i>} ⁺) of Homonuclear Pnictogen Diatomic Molecules: N ₂ , P ₂ , and As ₂ . Journal of Chemical Theory and Computation, 2015. 11. 2496-2507.	5.3	17
24	Fundamental aspects of recoupled pair bonds. II. Recoupled pair bond dyads in carbon and sulfur difluoride. Journal of Chemical Physics, 2015, 142, 034114.	3.0	15
25	The nature of the SO bond of chlorinated sulfur–oxygen compounds. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	15
26	Bonding in PF2Cl, PF3Cl, and PF4Cl: insight into isomerism and apicophilicity from ab initio calculations and the recoupled pair bonding model. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	8
27	Insights into the Perplexing Nature of the Bonding in C ₂ from Generalized Valence Bond Calculations. Journal of Chemical Theory and Computation, 2014, 10, 195-201.	5.3	66
28	Insights into the Electronic Structure of Disulfur Tetrafluoride Isomers from Generalized Valence Bond Theory. Journal of Physical Chemistry A, 2014, 118, 10117-10126.	2.5	10
29	Effects of Ligand Electronegativity on Recoupled Pair Bonds with Application to Sulfurane Precursors. Journal of Physical Chemistry A, 2014, 118, 5709-5719.	2.5	9
30	Why edge inversion? Theoretical characterization of the bonding in the transition states for inversion in F n NH(3â^'n) and FnPH(3â^'n) (nÂ=ÂOâ€"3). Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	12
31	Bonding in Sulfur–Oxygen Compounds—HSO/SOH and SOO/OSO: An Example of Recoupled Pair π Bonding. Journal of Chemical Theory and Computation, 2013, 9, 4444-4452.	5.3	24
32	Bonding in FSSF ₃ : Breakdown in Bond Length-Strength Correlations and Implications for SF ₂ Dimerization. Journal of Physical Chemistry Letters, 2013, 4, 3139-3143.	4.6	24
33	The First Row Anomaly and Recoupled Pair Bonding in the Halides of the Late p-Block Elements. Accounts of Chemical Research, 2013, 46, 359-368.	15.6	47
34	High Level ab Initio Calculations for ClF _{<i>n</i>} ⁺ (<i>n</i> = 1–6) Ions: Refining the Recoupled Pair Bonding Model. Journal of Physical Chemistry A, 2013, 117, 4251-4266.	2.5	10
35	Bonding and Isomerism in SF _{<i>n</i>)a^°1} Cl (<i>n</i> = 1â°°6): A Quantum Chemical Study. Journal of Physical Chemistry A, 2011, 115, 329-341.	2.5	25
36	Bonding in SCl _{<i>n</i>} (<i>n</i> = $1\hat{a}^{\circ}$ 6): A Quantum Chemical Study. Journal of Physical Chemistry A, 2011, 115, 4757-4764.	2.5	26

#	Article	IF	CITATIONS
37	Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg. Theoretical Chemistry Accounts, 2011, 128, 69-82.	1.4	536
38	Hypervalency and recoupled pair bonding in the p-block elements. Computational and Theoretical Chemistry, 2011, 963, 7-12.	2.5	23
39	Recoupled Pair Bonding in PF _{<i>n</i>} (<i>n</i> = 1â^'5) ^{â€} . Journal of Physical Chemistry A, 2010, 114, 8845-8851.	2.5	41
40	Bonding in ClF $<$ sub $>$ $<$ i $>$ n $<$ i $>$ $<$ sub $>$ ($<$ i $>$ n $<$ i $>$ = 1 \hat{a} ^27) Molecules: Further Insight into the Electronic Structure of Hypervalent Molecules and Recoupled Pair Bonds. Journal of Physical Chemistry A, 2009, 113, 12645-12654.	2.5	42
41	A comparison between polar covalent bonding and hypervalent recoupled pair bonding in diatomic chalcogen halide species {O,S,Se} × {F,Cl,Br}. Molecular Physics, 2009, 107, 991-998.	1.7	42
42	Theory of Hypervalency: Recoupled Pair Bonding in SF _{<i>n</i>} (<i>n</i> > = $1\hat{a}^{\circ}$ 6). Journal of Physical Chemistry A, 2009, 113, 7915-7926.	2.5	81
43	The electronic structure of the two lowest states of CuC. Journal of Chemical Physics, 2008, 129, 174306.	3.0	9
44	SiH2, a critical study. Molecular Physics, 2004, 102, 2597-2606.	1.7	12
45	SO2 revisited: Impact of tight d augmented correlation consistent basis sets on structure and energetics. Journal of Chemical Physics, 2003, 119, 11712-11714.	3.0	83
46	Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. Journal of Chemical Physics, 2001, 114, 9244-9253.	3.0	1,463
47	Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. Journal of Chemical Physics, 1999, 110, 7667-7676.	3.0	1,309
48	Benchmark calculations with correlated molecular wave functions. VIII. Bond energies and equilibrium geometries of the CHn and C2Hn (n= $1\hat{a}\in$ "4) series. Journal of Chemical Physics, 1997, 106, 4119-4140.	3.0	116
49	Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2â†'H2+H reaction. Journal of Chemical Physics, 1994, 100, 7410-7415.	3.0	1,636
50	Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. Journal of Chemical Physics, 1993, 98, 1358-1371.	3.0	8,623
51	Electron affinities of the firstâ€row atoms revisited. Systematic basis sets and wave functions. Journal of Chemical Physics, 1992, 96, 6796-6806.	3.0	13,437
52	Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. Journal of Chemical Physics, 1989, 90, 1007-1023.	3.0	27,560
53	Theoretical studies of the reactions of HCN with atomic hydrogen. Journal of Chemical Physics, 1985, 82, 2280-2294.	3.0	102
54	Reaction dynamics for O(3P)+H2 and D2. IV. Reduced dimensionality quantum and quasiclassical rate constants with an adiabatic incorporation of the bending motion. Journal of Chemical Physics, 1984, 81, 1739-1752.	3.0	49

#	Article	IF	CITATIONS
55	Variational transition state theory and tunneling for a heavy–light–heavy reaction using an ab initio potential energy surface. 37Cl+H(D) 35Cl→H(D) 37Cl+35Cl. Journal of Chemical Physics, 1983, 78, 4400-4413.	3.0	242
56	Quantum chemical calculations using the floating point systems, Inc. Model 164 attached processor. International Journal of Quantum Chemistry, 1983, 24, 613-622.	2.0	2
57	Theoretical characterization of negative ions. Calculation of the electron affinities of carbon, oxygen, and fluorine. Journal of Chemical Physics, 1982, 76, 6046-6056.	3.0	64
58	Valence correlation in the s2dn, sdn+1, and dn+2 states of the firstâ€row transition metal atoms. Journal of Chemical Physics, 1981, 75, 3466-3476.	3.0	113
59	Theoretical characterization of the potential energy surface of the ground state of the HCO system. Journal of Chemical Physics, 1980, 73, 2304-2309.	3.0	65
60	Theoretical studies of the O+H2 reaction. Journal of Chemical Physics, 1980, 72, 2894-2896.	3.0	42
61	A theoretical study of the potential energy surface for OH+H2. Journal of Chemical Physics, 1980, 72, 1303-1311.	3.0	206
62	Generalized valence bond description of bonding in low-lying states of molecules. Accounts of Chemical Research, 1973, 6, 368-376.	15.6	467
63	Dynamical electron correlation and the chemical bond. I. Covalent bonds in AH and AF (A = B-F). Journal of Chemical Physics, 0, , .	3.0	2