
Alice Valentini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/397031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterizing the spatial signal of environmental DNA in river systems using a community ecology approach. Molecular Ecology Resources, 2022, 22, 1274-1283.	4.8	20
2	A comparison of visual observation and DNA metabarcoding to assess the diet of juvenile sea turtle. Marine and Freshwater Research, 2022, 73, 552-560.	1.3	5
3	Evaluating bioinformatics pipelines for populationâ€level inference using environmental DNA. Environmental DNA, 2022, 4, 674-686.	5.8	10
4	Cross-ocean patterns and processes in fish biodiversity on coral reefs through the lens of eDNA metabarcoding. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220162.	2.6	14
5	Disentangling the components of coastal fish biodiversity in southern Brittany by applying an environmental <scp>DNA</scp> approach. Environmental DNA, 2022, 4, 920-939.	5.8	6
6	Ecological indicators based on quantitative eDNA metabarcoding: the case of marine reserves. Ecological Indicators, 2022, 140, 108966.	6.3	8
7	Low level of anthropization linked to harsh vertebrate biodiversity declines in Amazonia. Nature Communications, 2022, 13, .	12.8	13
8	Applying convolutional neural networks to speed up environmental DNA annotation in a highly diverse ecosystem. Scientific Reports, 2022, 12, .	3.3	2
9	Lost and found: Frogs in a biodiversity hotspot rediscovered with environmental DNA. Molecular Ecology, 2021, 30, 3289-3298.	3.9	27
10	Comparison of markers for the monitoring of freshwater benthic biodiversity through DNA metabarcoding. Molecular Ecology, 2021, 30, 3189-3202.	3.9	35
11	Morphological vs. DNA metabarcoding approaches for the evaluation of stream ecological status with benthic invertebrates: Testing different combinations of markers and strategies of data filtering. Molecular Ecology, 2021, 30, 3203-3220.	3.9	27
12	Environmental DNA metabarcoding for freshwater bivalves biodiversity assessment: methods and results for the Western Palearctic (European sub-region). Hydrobiologia, 2021, 848, 2931-2950.	2.0	24
13	Comparing environmental DNA metabarcoding and underwater visual census to monitor tropical reef fishes. Environmental DNA, 2021, 3, 142-156.	5.8	61
14	Detecting fish assemblages with environmental DNA: Does protocol matter? Testing eDNA metabarcoding method robustness. Environmental DNA, 2021, 3, 619-630.	5.8	14
15	The future of fishâ€based ecological assessment of European rivers: from traditional EU Water Framework Directive compliant methods to eDNA metabarcodingâ€based approaches. Journal of Fish Biology, 2021, 98, 354-366.	1.6	45
16	Seasonal dynamics of riverine fish communities using eDNA. Journal of Fish Biology, 2021, 98, 387-398.	1.6	24
17	Detection of the elusive Dwarf sperm whale (<i>Kogia sima</i>) using environmental DNA at Malpelo island (Eastern Pacific, Colombia). Ecology and Evolution, 2021, 11, 2956-2962.	1.9	14
18	Cinq ans d'inventaires des Bivalves de France par analyse de l'ADN environnemental : quelles conclusions, quelles perspectives ?. Naturae, 2021, , .	0.1	1

#	Article	IF	CITATIONS
19	Amazonian mammal monitoring using aquatic environmental DNA. Molecular Ecology Resources, 2021, 21, 1875-1888.	4.8	11
20	Environmental DNA metabarcoding reveals and unpacks a biodiversity conservation paradox in Mediterranean marine reserves. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210112.	2.6	28
21	Environmental DNA metabarcoding as a useful tool for evaluating terrestrial mammal diversity in tropical forests. Ecological Applications, 2021, 31, e02335.	3.8	36
22	Benchmarking bioinformatic tools for fast and accurate eDNA metabarcoding species identification. Molecular Ecology Resources, 2021, 21, 2565-2579.	4.8	35
23	eDNA sampled from stream networks correlates with camera trap detection rates of terrestrial mammals. Scientific Reports, 2021, 11, 11362.	3.3	35
24	Comparing the performance of 12S mitochondrial primers for fish environmental DNA across ecosystems. Environmental DNA, 2021, 3, 1113-1127.	5.8	38
25	Alarming decline of freshwater trigger species in western Mediterranean key biodiversity areas. Conservation Biology, 2021, 35, 1367-1379.	4.7	12
26	Detecting aquatic and terrestrial biodiversity in a tropical estuary using environmental DNA. Biotropica, 2021, 53, 1606-1619.	1.6	18
27	Use of environmental DNA in assessment of fish functional and phylogenetic diversity. Conservation Biology, 2021, 35, 1944-1956.	4.7	25
28	Congruency between two traditional and eDNA-based sampling methods in characterising taxonomic and trait-based structure of fish communities and community-environment relationships in lentic environment. Ecological Indicators, 2021, 129, 107952.	6.3	32
29	How many replicates to accurately estimate fish biodiversity using environmental DNA on coral reefs?. Ecology and Evolution, 2021, 11, 14630-14643.	1.9	28
30	A practical guide to DNA-based methods for biodiversity assessment. , 2021, , .		57
31	Blind assessment of vertebrate taxonomic diversity across spatial scales by clustering environmental DNA metabarcoding sequences. Ecography, 2020, 43, 1779-1790.	4.5	37
32	Are all Buruli ulcers caused by <i>Mycobacterium ulcerans</i> ?. British Journal of Dermatology, 2020, 183, 968-970.	1.5	3
33	Using environmental DNA for detection of <i>Batrachochytrium salamandrivorans</i> in natural water. Environmental DNA, 2020, 2, 565-571.	5.8	11
34	Unlocking biodiversity and conservation studies in highâ€diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes. Molecular Ecology Resources, 2019, 19, 27-46.	4.8	135
35	Foraging plasticity allows a large herbivore to persist in a sheltering forest habitat: DNA metabarcoding diet analysis of the European bison. Forest Ecology and Management, 2019, 449, 117474.	3.2	39
36	eDNA Increases the Detectability of Ranavirus Infection in an Alpine Amphibian Population. Viruses, 2019, 11, 526.	3.3	32

#	Article	IF	CITATIONS
37	Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Scientific Reports, 2019, 9, 3085.	3.3	93
38	Diet of the brown bear in Himalaya: Combining classical and molecular genetic techniques. PLoS ONE, 2019, 14, e0225698.	2.5	12
39	Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Scientific Reports, 2018, 8, 10361.	3.3	274
40	Application of <scp>DNA</scp> metabarcoding on faeces to identify European catfish <i>Silurus glanis</i> diet. Journal of Fish Biology, 2017, 90, 2214-2219.	1.6	37
41	<scp>eDNA</scp> metabarcoding: a promising method for anuran surveys in highly diverse tropical forests. Molecular Ecology Resources, 2017, 17, 904-914.	4.8	78
42	Environmental DNA characterization of amphibian communities in the Brazilian Atlantic forest: Potential application for conservation of a rich and threatened fauna. Biological Conservation, 2017, 215, 225-232.	4.1	34
43	Spatial Representativeness of Environmental DNA Metabarcoding Signal for Fish Biodiversity Assessment in a Natural Freshwater System. PLoS ONE, 2016, 11, e0157366.	2.5	167
44	Nextâ€generation monitoring of aquatic biodiversity using environmental <scp>DNA</scp> metabarcoding. Molecular Ecology, 2016, 25, 929-942.	3.9	873
45	Detection of a global aquatic invasive amphibian, Xenopus laevis, using environmental DNA. Amphibia - Reptilia, 2016, 37, 131-136.	0.5	23
46	Invasive North American bullfrogs transmit lethal fungus Batrachochytrium dendrobatidis infections to native amphibian host species. Biological Invasions, 2016, 18, 2299-2308.	2.4	35
47	Trails of river monsters: Detecting critically endangered Mekong giant catfish Pangasianodon gigas using environmental DNA. Global Ecology and Conservation, 2016, 7, 148-156.	2.1	50
48	Detection of Invasive Mosquito Vectors Using Environmental DNA (eDNA) from Water Samples. PLoS ONE, 2016, 11, e0162493.	2.5	83
49	Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects. PeerJ, 2016, 4, e1966.	2.0	111
50	Integrating microorganism and macroorganism dispersal: modes, techniques and challenges with particular focus on co-dispersal. Ecoscience, 2015, 22, 109-124.	1.4	35
51	Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biological Conservation, 2015, 183, 19-28.	4.1	373
52	No Evidence for the Effect of MHC on Male Mating Success in the Brown Bear. PLoS ONE, 2014, 9, e113414.	2.5	8
53	The environmental biological signature: NGS profiling for forensic comparison of soils. Forensic Science International, 2014, 240, 41-47.	2.2	55
54	Environmental <scp>DNA</scp> surveillance for invertebrate species: advantages and technical limitations to detect invasive crayfish <i><scp>P</scp>rocambarus clarkii</i> in freshwater ponds. Journal of Applied Ecology, 2014, 51, 871-879.	4.0	218

#	Article	IF	CITATIONS
55	Plant functional traits reveal the relative contribution of habitat and food preferences to the diet of grasshoppers. Oecologia, 2013, 173, 1459-1470.	2.0	69
56	Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog <i>Lithobates catesbeianus</i> . Journal of Applied Ecology, 2012, 49, 953-959.	4.0	447
57	DNA from soil mirrors plant taxonomic and growth form diversity. Molecular Ecology, 2012, 21, 3647-3655.	3.9	262
58	Influence of management practices on large herbivore diet—Case of European bison in BiaÅ,owieża Primeval Forest (Poland). Forest Ecology and Management, 2011, 261, 821-828.	3.2	154
59	Persistence of Environmental DNA in Freshwater Ecosystems. PLoS ONE, 2011, 6, e23398.	2.5	507
60	DNA Barcoding for Honey Biodiversity. Diversity, 2010, 2, 610-617.	1.7	90
61	Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures. Frontiers in Zoology, 2009, 6, 16.	2.0	233
62	DNA barcoding for ecologists. Trends in Ecology and Evolution, 2009, 24, 110-117.	8.7	803
63	Universal DNA-Based Methods for Assessing the Diet of Grazing Livestock and Wildlife from Feces. Journal of Agricultural and Food Chemistry, 2009, 57, 5700-5706.	5.2	80
64	New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the <i>trn</i> L approach. Molecular Ecology Resources, 2009, 9, 51-60.	4.8	358
65	Genetic tracking of the brown bear in northern Pakistan and implications for conservation. Biological Conservation, 2007, 134, 537-547.	4.1	47
66	Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Research, 2007, 35, e14-e14.	14.5	842
67	GENETIC RELATIONSHIPS AMONG ANISAKIS SPECIES (NEMATODA: ANISAKIDAE) INFERRED FROM MITOCHONDRIALCOX2SEQUENCES, AND COMPARISON WITH ALLOZYME DATA. Journal of Parasitology, 2006, 92, 156-166.	0.7	160
68	Circumglobal distribution of fish environmental DNA in coral reefs. ARPHA Conference Abstracts, 0, 4, .	0.0	0
69	DNAqua-Net: Developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in Europe. Research Ideas and Outcomes, 0, 2, e11321.	1.0	154