Anna Antonell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3969412/publications.pdf

Version: 2024-02-01

101 papers

5,087 citations

35 h-index 98798 67 g-index

108 all docs 108 docs citations

108 times ranked 8082 citing authors

#	Article	IF	CITATIONS
1	Baseline MRI atrophy predicts 2-year cognitive outcomes in early-onset Alzheimer's disease. Journal of Neurology, 2022, 269, 2573-2583.	3.6	6
2	Examining empathy deficits across familial forms of frontotemporal dementia within the GENFI cohort. Cortex, 2022, 150, 12-28.	2.4	2
3	Conceptual framework for the definition of preclinical and prodromal frontotemporal dementia. Alzheimer's and Dementia, 2022, 18, 1408-1423.	0.8	24
4	Evolution of Clinical-Pathological Correlations in Early-Onset Alzheimer's Disease Over a 25-Year Period in an Academic Brain Bank. Journal of Alzheimer's Disease, 2022, 87, 1659-1669.	2.6	5
5	Genetic variation in APOE, GRN, and TP53 are phenotype modifiers in frontotemporal dementia. Neurobiology of Aging, 2021, 99, 99.e15-99.e22.	3.1	8
6	Progression of Behavioral Disturbances and Neuropsychiatric Symptoms in Patients With Genetic Frontotemporal Dementia. JAMA Network Open, 2021, 4, e2030194.	5.9	42
7	Cognitive decline in amyotrophic lateral sclerosis: Neuropathological substrate and genetic determinants. Brain Pathology, 2021, 31, e12942.	4.1	9
8	Common variants in Alzheimer's disease and risk stratification by polygenic risk scores. Nature Communications, 2021, 12, 3417.	12.8	140
9	Differential early subcortical involvement in genetic FTD within the GENFI cohort. Neurolmage: Clinical, 2021, 30, 102646.	2.7	28
10	Disease-related cortical thinning in presymptomatic granulin mutation carriers. Neurolmage: Clinical, 2021, 29, 102540.	2.7	8
11	Longitudinal brain atrophy and CSF biomarkers in early-onset Alzheimer's disease. Neurolmage: Clinical, 2021, 32, 102804.	2.7	28
12	<i>SLITRK2</i> , an X-linked modifier of the age at onset in <i>C9orf72</i> frontotemporal lobar degeneration. Brain, 2021, 144, 2798-2811.	7.6	7
13	Agreement of amyloid PET and CSF biomarkers in a clinical cohort. Alzheimer's and Dementia, 2021, 17, .	0.8	O
14	Impact of COVIDâ€19 pandemic in an earlyâ€onset dementia clinic in Barcelona. Alzheimer's and Dementia, 2021, 17, e052114.	0.8	0
15	Synaptic, axonal damage and inflammatory cerebrospinal fluid biomarkers in neurodegenerative dementias. Alzheimer's and Dementia, 2020, 16, 262-272.	0.8	47
16	Role for ATXN1, ATXN2, and HTT intermediate repeats in frontotemporal dementia and Alzheimer's disease. Neurobiology of Aging, 2020, 87, 139.e1-139.e7.	3.1	35
17	Multicenter Alzheimer's and Parkinson's disease immune biomarker verification study. Alzheimer's and Dementia, 2020, 16, 292-304.	0.8	29
18	Distinct neuropsychological presentation and progression between early―and late―nset Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e036809.	0.8	1

#	Article	IF	Citations
19	Four years' experience in an earlyâ€onset dementia clinic in Barcelona. Alzheimer's and Dementia, 2020, 16, e037911.	0.8	O
20	An ABCA7 partial deletion and a GRN variant in a semantic variant of primary progressive aphasia patient. Alzheimer's and Dementia, 2020, 16, e042483.	0.8	1
21	Differential gene expression in genetic and earlyâ€onset Alzheimer's disease in two biological samples: Brain tissue and lymphoblastoid cell lines. Alzheimer's and Dementia, 2020, 16, e042671.	0.8	0
22	Functional network alterations in earlyâ€onset Alzheimer's disease studied with restingâ€state fMRI. Alzheimer's and Dementia, 2020, 16, e043307.	0.8	0
23	Copathology in Progressive Supranuclear Palsy: Does It Matter?. Movement Disorders, 2020, 35, 984-993.	3.9	48
24	Diagnostic Accuracy of MRI Visual Rating Scales in the Diagnosis of Early Onset Cognitive Impairment. Journal of Alzheimer's Disease, 2020, 73, 1575-1583.	2.6	12
25	Contribution of CSF biomarkers to earlyâ€onset Alzheimer's disease and frontotemporal dementia neuroimaging signatures. Human Brain Mapping, 2020, 41, 2004-2013.	3.6	22
26	Screening of dementia genes by whole-exome sequencing in Spanish patients with early-onset dementia: likely pathogenic, uncertain significance and risk variants. Neurobiology of Aging, 2020, 93, e1-e9.	3.1	11
27	Faster Cortical Thinning and Surface Area Loss in Presymptomatic and Symptomatic <i>C9orf72</i> Repeat Expansion Adult Carriers. Annals of Neurology, 2020, 88, 113-122.	5.3	19
28	Microglial Hyperreactivity Evolved to Immunosuppression in the Hippocampus of a Mouse Model of Accelerated Aging and Alzheimer's Disease Traits. Frontiers in Aging Neuroscience, 2020, 12, 622360.	3.4	9
29	Social cognition impairment in genetic frontotemporal dementia within the GENFI cohort. Cortex, 2020, 133, 384-398.	2.4	26
30	Hippocampal atrophy has limited usefulness as a diagnostic biomarker on the early onset Alzheimer's disease patients: A comparison between visual and quantitative assessment. NeuroImage: Clinical, 2019, 23, 101927.	2.7	29
31	Novel P397S <i>MAPT</i> variant associated with late onset and slow progressive frontotemporal dementia. Annals of Clinical and Translational Neurology, 2019, 6, 1559-1565.	3.7	6
32	A unique common ancestor introduced P301L mutation in MAPT gene in frontotemporal dementia patients from Barcelona (Baix Llobregat, Spain). Neurobiology of Aging, 2019, 84, 236.e9-236.e15.	3.1	7
33	Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurology, The, 2019, 18, 1103-1111.	10.2	128
34	The inner fluctuations of the brain in presymptomatic Frontotemporal Dementia: The chronnectome fingerprint. Neurolmage, 2019, 189, 645-654.	4.2	33
35	Regional patterns of $18F$ -florbetaben uptake in presenilin 1 mutation carriers. Neurobiology of Aging, $2019,81,1$ -8.	3.1	5
36	Clinical applicability of diagnostic biomarkers in earlyâ€onset cognitive impairment. European Journal of Neurology, 2019, 26, 1098-1104.	3.3	20

3

#	Article	IF	CITATIONS
37	ICâ€02â€05: GENDER DIFFERENCES IN THE ASSOCIATION BETWEEN LONGITUDINAL BRAIN CHANGES AND BASEI LEVELS OF CSF ALZHEIMER'S DISEASE AND GLIAL BIOMARKERS IN HEALTHY ELDERS. Alzheimer's and Dementia, 2019, 15, P4.	LINE 0.8	O
38	APPâ€derived peptides reflect neurodegeneration in frontotemporal dementia. Annals of Clinical and Translational Neurology, 2019, 6, 2518-2530.	3.7	13
39	White matter hyperintensities in progranulin-associated frontotemporal dementia: A longitudinal GENFI study. NeuroImage: Clinical, 2019, 24, 102077.	2.7	27
40	Functional network resilience to pathology in presymptomatic genetic frontotemporal dementia. Neurobiology of Aging, 2019, 77, 169-177.	3.1	47
41	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	10.2	97
42	P2â€347: THE HIPPOCAMPAL LONGITUDINAL AXIS: RELEVANCE FOR UNDERLYING TAU AND TDPâ€43 PATHOLOGAlzheimer's and Dementia, 2018, 14, P819.	GY _{0.8}	0
43	P1â€146: WHOLE EXOME SEQUENCING IN PATIENTS WITH EARLYâ€ONSET ALZHEIMER'S DISEASE AND FRONTOTEMPORAL DEMENTIA: MUTATION DETECTION IN CAUSAL AND RISK GENES FOR DEMENTIA. Alzheimer's and Dementia, 2018, 14, P332.	0.8	O
44	P1â€432: REGIONAL PATTERNS OF 18Fâ€FLORBETABEN UPTAKE IN PRESENILIN 1ÂMUTATION CARRIERS. Alzheim and Dementia, 2018, 14, P475.	ier's 0.8	0
45	O3â€09â€03: SERUM NEUROFILAMENT LIGHT LEVELS CORRELATE WITH SEVERITY MEASURES AND NEURODEGENERATION MARKERS IN AUTOSOMAL DOMINANT ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P1037.	0.8	O
46	Serum neurofilament light levels correlate with severity measures and neurodegeneration markers in autosomal dominant Alzheimer's disease. Alzheimer's Research and Therapy, 2018, 10, 113.	6.2	54
47	The hippocampal longitudinal axisâ€"relevance for underlying tau and TDP-43 pathology. Neurobiology of Aging, 2018, 70, 1-9.	3.1	21
48	Systematic Screening of Ubiquitin/p62 Aggregates in Cerebellar Cortex Expands the Neuropathological Phenotype of the C9orf72 Expansion Mutation. Journal of Neuropathology and Experimental Neurology, 2018, 77, 703-709.	1.7	18
49	A Common Variant in the MC1R Gene (p.V92M) is associated with Alzheimer's Disease Risk. Journal of Alzheimer's Disease, 2017, 56, 1065-1074.	2.6	5
50	Frontotemporal Dementia Caused by the P301L Mutation in the <i> MAPT</i> Gene: Clinicopathological Features of 13 Cases from the Same Geographical Origin in Barcelona, Spain. Dementia and Geriatric Cognitive Disorders, 2017, 44, 213-221.	1.5	31
51	CSF microRNA Profiling in Alzheimer's Disease: a Screening and Validation Study. Molecular Neurobiology, 2017, 54, 6647-6654.	4.0	45
52	Plasma miR-34a-5p and miR-545-3p as Early Biomarkers of Alzheimer's Disease: Potential and Limitations. Molecular Neurobiology, 2017, 54, 5550-5562.	4.0	119
53	[P2–410]: VISUAL AND QUANTITATIVE ASSESSMENT OF HIPPOCAMPAL ATROPHY IN EARLY ONSET ALZHEIMER's DISEASE PATIENTS. Alzheimer's and Dementia, 2017, 13, P789.	0.8	O
54	<scp>sTREM</scp> 2 cerebrospinal fluid levels are a potential biomarker for microglia activity in earlyâ€stage Alzheimer's disease and associate with neuronal injury markers. EMBO Molecular Medicine, 2016, 8, 466-476.	6.9	392

#	Article	IF	CITATIONS
55	White Matter Abnormalities Track Disease Progression in PSEN1 Autosomal Dominant Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 51, 827-835.	2.6	17
56	Preservation of cell-survival mechanisms by the presenilin-1 K239N mutation may cause its milder clinical phenotype. Neurobiology of Aging, 2016, 46, 169-179.	3.1	5
57	Cerebrospinal Fluid Biomarkers Predict Clinical Evolution in Patients with Subjective Cognitive Decline and Mild Cognitive Impairment. Neurodegenerative Diseases, 2016, 16, 69-76.	1.4	36
58	CSF YKL-40 and pTau181 are related to different cerebral morphometric patterns in early AD. Neurobiology of Aging, 2016, 38, 47-55.	3.1	54
59	Altered Blood Gene Expression of Tumor-Related Genes (PRKCB, BECN1, and CDKN2A) in Alzheimer's Disease. Molecular Neurobiology, 2016, 53, 5902-5911.	4.0	15
60	MAPT H1 Haplotype is Associated with Late-Onset Alzheimer's Disease Risk in APOE ɛ4 Noncarriers: Results from the Dementia Genetics Spanish Consortium. Journal of Alzheimer's Disease, 2015, 49, 343-352.	2.6	32
61	Diagnostic accuracy of behavioral variant frontotemporal dementia consortium criteria (FTDC) in a clinicopathological cohort. Neuropathology and Applied Neurobiology, 2015, 41, 882-892.	3.2	26
62	Evolving brain structural changes in PSEN1 mutation carriers. Neurobiology of Aging, 2015, 36, 1261-1270.	3.1	30
63	CSF biomarkers for the differential diagnosis of Alzheimer's disease: A largeâ€scale international multicenter study. Alzheimer's and Dementia, 2015, 11, 1306-1315.	0.8	104
64	Usefulness of Biomarkers in the Diagnosis and Prognosis of Early-Onset Cognitive Impairment. Journal of Alzheimer's Disease, 2014, 40, 919-927.	2.6	32
65	Reply. Annals of Neurology, 2014, 75, 460-461.	5.3	0
66	TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Science Translational Medicine, 2014, 6, 243ra86.	12.4	600
67	Assessing the role of the TREM2 p.R47H variant as a risk factor for Alzheimer's disease and frontotemporal dementia. Neurobiology of Aging, 2014, 35, 444.e1-444.e4.	3.1	92
68	Identification of blood serum microâ€RNAs associated with idiopathic and <i>LRRK2</i> Parkinson's disease. Journal of Neuroscience Research, 2014, 92, 1071-1077.	2.9	122
69	TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathologica, 2014, 127, 407-418.	7.7	123
70	Large APP locus duplication in a sporadic case of cerebral haemorrhage. Neurogenetics, 2014, 15, 145-149.	1.4	12
71	Characterization of the repeat expansion size in C9orf72 in amyotrophic lateral sclerosis and frontotemporal dementia. Human Molecular Genetics, 2014, 23, 749-754.	2.9	98
72	Cerebrospinal Fluid Level of YKL-40 Protein in Preclinical and Prodromal Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 42, 901-908.	2.6	102

#	Article	IF	CITATIONS
73	White matter changes in preclinical Alzheimer's disease: a magnetic resonance imaging-diffusion tensor imaging study on cognitively normal older people with positive amyloid \hat{l}^2 protein 42 levels. Neurobiology of Aging, 2014, 35, 2671-2680.	3.1	72
74	P1-253: WHITE MATTER CHANGES IN PRECLINICAL ALZHEIMER'S DISEASE: AN MRI DIFFUSION TENSOR IMAGING STUDY. , 2014, 10, P399-P400.		0
75	Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Annals of Neurology, 2013, 74, 655-668.	5.3	171
76	A Panâ€∢scp>European Study of the <i>C9orf72</i> Repeat Associated with <scp>FTLD</scp> : Geographic Prevalence, Genomic Instability, and Intermediate Repeats. Human Mutation, 2013, 34, 363-373.	2.5	247
77	CSF biomarker variability in the Alzheimer's Association quality control program. Alzheimer's and Dementia, 2013, 9, 251-261.	0.8	344
78	A preliminary study of the whole-genome expression profile of sporadic and monogenic early-onset Alzheimer's disease. Neurobiology of Aging, 2013, 34, 1772-1778.	3.1	87
79	Neuroimaging and Biochemical Markers in the Three Variants of Primary Progressive Aphasia. Dementia and Geriatric Cognitive Disorders, 2013, 35, 106-117.	1.5	53
80	Cognitive Reserve Proxies Relate to Gray Matter Loss in Cognitively Healthy Elderly with Abnormal Cerebrospinal Fluid Amyloid-1² Levels. Journal of Alzheimer's Disease, 2013, 35, 715-726.	2.6	40
81	Decreased striatal dopamine transporter uptake in the nonâ€fluent/agrammatic variant of primary progressive aphasia. European Journal of Neurology, 2013, 20, 1459.	3.3	11
82	The AD-CSF-Index Discriminates Alzheimer's Disease Patients from Healthy Controls: A Validation Study. Journal of Alzheimer's Disease, 2013, 36, 67-77.	2.6	53
83	Evolving Brain Functional Abnormalities in PSEN1 Mutation Carriers: A Resting and Visual Encoding fMRI Study. Journal of Alzheimer's Disease, 2013, 36, 165-175.	2.6	19
84	Breakpoint Sequence Analysis of an AβPP Locus Duplication Associated with Autosomal Dominant Alzheimer's Disease and Severe Cerebral Amyloid Angiopathy. Journal of Alzheimer's Disease, 2012, 28, 303-308.	2.6	10
85	PSEN1 Mutation Carriers Present Lower Cerebrospinal Fluid Amyoid-Î ² 42 Levels than Sporadic Early-Onset Alzheimer's Disease Patients but no Differences in Neuronal Injury Biomarkers. Journal of Alzheimer's Disease, 2012, 30, 605-616.	2.6	6
86	Phenotypic Variability Within the Inclusion Body Spectrum of Basophilic Inclusion Body Disease and Neuronal Intermediate Filament Inclusion Disease in Frontotemporal Lobar Degenerations With FUS-Positive Inclusions. Journal of Neuropathology and Experimental Neurology, 2012, 71, 795-805.	1.7	18
87	Serum Progranulin Levels in Patients with Frontotemporal Lobar Degeneration and Alzheimer's Disease: Detection of GRN Mutations in a Spanish Cohort. Journal of Alzheimer's Disease, 2012, 31, 581-591.	2.6	31
88	Distinct Functional Activity of the Precuneus and Posterior Cingulate Cortex During Encoding in the Preclinical Stage of Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 31, 517-526.	2.6	59
89	Cellular crosstalk between TNF-α, NADPH oxidase, PKCβ2, and C2GNT in human leukocytes. Cellular Signalling, 2012, 24, 873-878.	3.6	13
90	Applying the new research diagnostic criteria: MRI findings and neuropsychological correlations of prodromal AD. International Journal of Geriatric Psychiatry, 2012, 27, 127-134.	2.7	38

#	Article	IF	CITATIONS
91	Cognitively Preserved Subjects with Transitional Cerebrospinal Fluid ß-Amyloid 1-42 Values Have Thicker Cortex in Alzheimer's Disease Vulnerable Areas. Biological Psychiatry, 2011, 70, 183-190.	1.3	93
92	A novel PSEN1 gene mutation (L235R) associated with familial early-onset Alzheimer's disease. Neuroscience Letters, 2011, 496, 40-42.	2.1	13
93	Association between cerebrospinal fluid tau and brain atrophy is not related to clinical severity in the Alzheimer's disease continuum. Psychiatry Research - Neuroimaging, 2011, 192, 140-146.	1.8	19
94	Different profiles of Alzheimer's disease cerebrospinal fluid biomarkers in controls and subjects with subjective memory complaints. Journal of Neural Transmission, 2011, 118, 259-262.	2.8	49
95	Cerebrospinal Fluid Biomarkers in Alzheimer's Disease Families with <i>PSEN1</i> Mutations. Neurodegenerative Diseases, 2011, 8, 202-207.	1.4	24
96	Clinical features and <i>APOE</i> genotype of pathologically proven early-onset Alzheimer disease. Neurology, 2011, 76, 1720-1725.	1.1	123
97	Transcriptome profile in Williams–Beuren syndrome lymphoblast cells reveals gene pathways implicated in glucose intolerance and visuospatial construction deficits. Human Genetics, 2010, 128, 27-37.	3.8	14
98	Partial 7q11.23 deletions further implicate GTF2I and GTF2IRD1 as the main genes responsible for the Williams-Beuren syndrome neurocognitive profile. Journal of Medical Genetics, 2010, 47, 312-320.	3.2	103
99	MAPT gene duplications are not a cause of frontotemporal lobar degeneration. Neuroscience Letters, 2007, 424, 61-65.	2.1	14
100	Hemizygosity at the NCF1 Gene in Patients with Williams-Beuren Syndrome Decreases Their Risk of Hypertension. American Journal of Human Genetics, 2006, 78, 533-542.	6.2	107
101	Evolutionary mechanisms shaping the genomic structure of the Williams-Beuren syndrome chromosomal region at human 7q11.23. Genome Research, 2005, 15, 1179-1188.	5.5	70