Nilesh J Samani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3969400/publications.pdf

Version: 2024-02-01

751 1893 71,139 313 102 250 citations h-index g-index papers 325 325 325 68017 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Elucidation of the genetic causes of bicuspid aortic valve disease. Cardiovascular Research, 2023, 119, 857-866.	3.8	11
2	$\langle i \rangle$ Cis $\langle i \rangle$ -epistasis at the $\langle i \rangle$ LPA $\langle i \rangle$ locus and risk of cardiovascular diseases. Cardiovascular Research, 2022, 118, 1088-1102.	3.8	14
3	Vascular histopathology and connective tissue ultrastructure in spontaneous coronary artery dissection: pathophysiological and clinical implications. Cardiovascular Research, 2022, 118, 1835-1848.	3.8	27
4	Multimarker profiling identifies protective and harmful immune processes in heart failure: findings from BIOSTAT-CHF. Cardiovascular Research, 2022, 118, 1964-1977.	3.8	10
5	Prevalence and Disease Spectrum of Extracoronary Arterial Abnormalities in Spontaneous Coronary Artery Dissection. JAMA Cardiology, 2022, 7, 159.	6.1	18
6	Rare coding variants in 35 genes associate with circulating lipid levelsâ€"A multi-ancestry analysis of 170,000 exomes. American Journal of Human Genetics, 2022, 109, 81-96.	6.2	24
7	Measurement and initial characterization of leukocyte telomere length in 474,074 participants in UK Biobank. Nature Aging, 2022, 2, 170-179.	11.6	75
8	Elucidating mechanisms of genetic cross-disease associations at the PROCR vascular disease locus. Nature Communications, 2022, 13, 1222.	12.8	5
9	Clinical impact of changes in mitral regurgitation severity after medical therapy optimization in heart failure. Clinical Research in Cardiology, 2022, 111, 912-923.	3.3	10
10	Association of shorter leucocyte telomere length with risk of frailty. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1741-1751.	7.3	13
11	Biomarker changes as surrogate endpoints in earlyâ€phase trials in heart failure with reduced ejection fraction. ESC Heart Failure, 2022, 9, 2107-2118.	3.1	4
12	Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential. Science Advances, 2022, 8, eabl6579.	10.3	36
13	Heteroplasmic mitochondrial DNA variants in cardiovascular diseases. PLoS Genetics, 2022, 18, e1010068.	3.5	19
14	Long-term trends in the epidemiology of cardiovascular diseases in the UK: insights from the British Heart Foundation statistical compendium. Cardiovascular Research, 2022, 118, 2267-2280.	3.8	13
15	Clinical implications of low estimated protein intake in patients with heart failure. Journal of Cachexia, Sarcopenia and Muscle, 2022, , .	7.3	7
16	Investigation of a UK biobank cohort reveals causal associations of self-reported walking pace with telomere length. Communications Biology, 2022, 5, 381.	4.4	17
17	Effects of late, repetitive remote ischaemic conditioning on myocardial strain in patients with acute myocardial infarction. Basic Research in Cardiology, 2022, 117, 23.	5.9	3
18	Modifiable traits, healthy behaviours, and leukocyte telomere length: a population-based study in UK Biobank. The Lancet Healthy Longevity, 2022, 3, e321-e331.	4.6	27

#	Article	IF	CITATIONS
19	Whole blood transcriptomic profiling identifies molecular pathways related to cardiovascular mortality in heart failure. European Journal of Heart Failure, 2022, 24, 1009-1019.	7.1	6
20	Exploring the Genetic Architecture of Spontaneous Coronary Artery Dissection Using Whole-Genome Sequencing. Circulation Genomic and Precision Medicine, 2022, 15, 101161CIRCGEN121003527.	3.6	14
21	Distinct pathophysiological pathways in women and men with heart failure. European Journal of Heart Failure, 2022, 24, 1532-1544.	7.1	10
22	Pregnancy and Spontaneous Coronary Artery Dissection: Lessons From Survivors and Nonsurvivors. Circulation, 2022, 146, 69-72.	1.6	7
23	Clinical implications of left atrial changes after optimization of medical therapy in patients with heart failure. European Journal of Heart Failure, 2022, 24, 2131-2139.	7.1	8
24	Is acute heart failure a distinctive disorder? An analysis from BIOSTAT HF. European Journal of Heart Failure, 2021, 23, 43-57.	7.1	19
25	Professor Anthony H. Gershlick. European Heart Journal, 2021, 42, 1455-1457.	2.2	0
26	Polygenic risk scores in cardiovascular risk prediction: A cohort study and modelling analyses. PLoS Medicine, 2021, 18, e1003498.	8.4	95
27	The value of spot urinary creatinine as a marker of muscle wasting in patients with newâ€onset or worsening heart failure. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 555-567.	7.3	15
28	Machine learning based on biomarker profiles identifies distinct subgroups of heart failure with preserved ejection fraction. European Journal of Heart Failure, 2021, 23, 983-991.	7.1	70
29	Quality of life in men and women with heart failure: association with outcome, and comparison between the Kansas City Cardiomyopathy Questionnaire and the EuroQol 5 dimensions questionnaire. European Journal of Heart Failure, 2021, 23, 567-577.	7.1	26
30	Differential miRNAs in acute spontaneous coronary artery dissection: Pathophysiological insights from a potential biomarker. EBioMedicine, 2021, 66, 103338.	6.1	10
31	Association between upâ€titration of medical therapy and total hospitalizations and mortality in patients with recent worsening heart failure across the ejection fraction spectrum. European Journal of Heart Failure, 2021, 23, 1170-1181.	7.1	11
32	Novel LOX Variants in Five Families with Aortic/Arterial Aneurysm and Dissection with Variable Connective Tissue Findings. International Journal of Molecular Sciences, 2021, 22, 7111.	4.1	7
33	Impact of mitral regurgitation in patients with worsening heart failure: insights from <scp>BIOSTAT HF</scp> . European Journal of Heart Failure, 2021, 23, 1750-1758.	7.1	32
34	Shorter leukocyte telomere length is associated with adverse COVID-19 outcomes: A cohort study in UK Biobank. EBioMedicine, 2021, 70, 103485.	6.1	36
35	The genomics of heart failure: design and rationale of the HERMES consortium. ESC Heart Failure, 2021, 8, 5531-5541.	3.1	11
36	Leaders in Cardiovascular Research: Nilesh J. Samani. Cardiovascular Research, 2021, 117, e144-e146.	3.8	0

#	Article	IF	Citations
37	Polygenic basis and biomedical consequences of telomere length variation. Nature Genetics, 2021, 53, 1425-1433.	21.4	145
38	$128\hat{a} \in \mathcal{F}$ Clinical impact of changes in mitral regurgitation severity after optimization of medical therapy in heart failure: insights from BIOSTAT-CHF. European Heart Journal Supplements, 2021, 23, .	0.1	0
39	Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci. Molecular Psychiatry, 2020, 25, 2392-2409.	7.9	83
40	Plasma proteomic approach in patients withÂheart failure: insights into pathogenesis ofÂdisease progression and potential novel treatment targets. European Journal of Heart Failure, 2020, 22, 70-80.	7.1	28
41	Concentric vs. eccentric remodelling in heart failure with reduced ejection fraction: clinical characteristics, pathophysiology and response to treatment. European Journal of Heart Failure, 2020, 22, 1147-1155.	7.1	50
42	Evidence for Accelerated Biological Aging in Young Adults with Prader–Willi Syndrome. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2053-2059.	3.6	6
43	Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nature Communications, 2020, 11, 163.	12.8	466
44	The role of cathepsin D in the pathophysiology of heart failure and its potentially beneficial properties: a translational approach. European Journal of Heart Failure, 2020, 22, 2102-2111.	7.1	24
45	Chronic infarct size after spontaneous coronary artery dissection: implications for pathophysiology and clinical management. European Heart Journal, 2020, 41, 2197-2205.	2.2	35
46	Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells. Nature, 2020, 586, 769-775.	27.8	101
47	Association of Factor V Leiden With Subsequent Atherothrombotic Events. Circulation, 2020, 142, 546-555.	1.6	11
48	Novel loss of function mutation in <i>NOTCH1</i> in a family with bicuspid aortic valve, ventricular septal defect, thoracic aortic aneurysm, and aortic valve stenosis. Molecular Genetics & Enomic Medicine, 2020, 8, e1437.	1.2	10
49	Genetic Associations With Plasma Angiotensin Converting Enzyme 2 Concentration. Circulation, 2020, 142, 1117-1119.	1.6	16
50	Spontaneous Coronary Artery Dissection. Circulation Genomic and Precision Medicine, 2020, 13, e003030.	3.6	43
51	Heterozygous <i>ABCG5</i> Gene Deficiency and Risk of Coronary Artery Disease. Circulation Genomic and Precision Medicine, 2020, 13, 417-423.	3.6	45
52	Enrichment of Rare Variants in Loeys–Dietz Syndrome Genes in Spontaneous Coronary Artery Dissection but Not in Severe Fibromuscular Dysplasia. Circulation, 2020, 142, 1021-1024.	1.6	30
53	Genetic Predisposition to Coronary Artery Disease in Type 2 Diabetes Mellitus. Circulation Genomic and Precision Medicine, 2020, 13, e002769.	3.6	5
54	Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin–angiotensin–aldosterone inhibitors. European Heart Journal, 2020, 41, 1810-1817.	2.2	381

#	Article	IF	Citations
55	The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 2020, 581, 434-443.	27.8	6,140
56	Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction. Nature Communications, 2020, 11, 2542.	12.8	59
57	Clinical determinants and prognostic implications of renin and aldosterone in patients with symptomatic heart failure. ESC Heart Failure, 2020, 7, 953-963.	3.1	9
58	Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. American Journal of Human Genetics, 2020, 106, 389-404.	6.2	118
59	Genetics of educational attainment and coronary risk in Mendelian randomization studies. European Heart Journal, 2020, 41, 894-895.	2.2	5
60	Geographical differences in heart failure characteristics and treatment across Europe: results from the BIOSTAT-CHF study. Clinical Research in Cardiology, 2020, 109, 967-977.	3.3	7
61	Exome Sequencing Analysis Identifies Rare Variants in ATM and RPL8 That Are Associated With Shorter Telomere Length. Frontiers in Genetics, 2020, 11, 337.	2.3	4
62	A network analysis to identify pathophysiological pathways distinguishing ischaemic from nonâ€ischaemic heart failure. European Journal of Heart Failure, 2020, 22, 821-833.	7.1	28
63	Metabolomics reveals a link between homocysteine and lipid metabolism and leukocyte telomere length: the ENGAGE consortium. Scientific Reports, 2019, 9, 11623.	3.3	13
64	A flexible and parallelizable approach to genomeâ€wide polygenic risk scores. Genetic Epidemiology, 2019, 43, 730-741.	1.3	32
65	New alcohol-related genes suggest shared genetic mechanisms with neuropsychiatric disorders. Nature Human Behaviour, 2019, 3, 950-961.	12.0	7 5
66	Effects of Calcium, Magnesium, and Potassium Concentrations on Ventricular Repolarization in Unselected Individuals. Journal of the American College of Cardiology, 2019, 73, 3118-3131.	2.8	27
67	Identifying optimal doses of heart failure medications in men compared with women: a prospective, observational, cohort study. Lancet, The, 2019, 394, 1254-1263.	13.7	159
68	Genetically modulated educational attainment and coronary disease risk. European Heart Journal, 2019, 40, 2413-2420.	2.2	32
69	Genetic Risk Score for CoronaryÂDiseaseÂldentifies Predispositions to Cardiovascular andÂNoncardiovascular Diseases. Journal of the American College of Cardiology, 2019, 73, 2932-2942.	2.8	58
70	<i>HHIPL1</i> , a Gene at the 14q32 Coronary Artery Disease Locus, Positively Regulates Hedgehog Signaling and Promotes Atherosclerosis. Circulation, 2019, 140, 500-513.	1.6	24
71	The clinical significance of interleukinâ€6 in heart failure: results from the BIOSTAT HF study. European Journal of Heart Failure, 2019, 21, 965-973.	7.1	172
72	Subsequent Event Risk in Individuals With Established Coronary Heart Disease. Circulation Genomic and Precision Medicine, 2019, 12, e002470.	3.6	17

#	Article	IF	CITATIONS
73	Association of Chromosome 9p21 With Subsequent Coronary Heart Disease Events. Circulation Genomic and Precision Medicine, 2019, 12, e002471.	3.6	22
74	Spontaneous Coronary Artery Dissection. JACC: Cardiovascular Imaging, 2019, 12, 2475-2488.	5. 3	88
75	Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nature Genetics, 2019, 51, 452-469.	21.4	89
76	Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. Kidney International, 2019, 95, 624-635.	5.2	40
77	Clinical correlates and outcome associated with changes in 6â€minute walking distance in patients with heart failure: findings from the BIOSTATâ€CHF study. European Journal of Heart Failure, 2019, 21, 218-226.	7.1	25
78	£30 million award to transform cardiovascular research. Cardiovascular Research, 2019, 115, e7-e8.	3.8	0
79	Prognostic significance of changes in heart rate following uptitration of beta-blockers in patients with sub-optimally treated heart failure with reduced ejection fraction in sinus rhythm versus atrial fibrillation. Clinical Research in Cardiology, 2019, 108, 797-805.	3.3	10
80	Association of the PHACTR1/EDN1 Genetic Locus With Spontaneous Coronary Artery Dissection. Journal of the American College of Cardiology, 2019, 73, 58-66.	2.8	147
81	The narrow-sense and common single nucleotide polymorphism heritability of early repolarization. International Journal of Cardiology, 2019, 279, 135-140.	1.7	7
82	Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. Journal of Clinical Investigation, 2019, 129, 1115-1128.	8.2	105
83	Network analysis of coronary artery disease risk genes elucidates disease mechanisms and druggable targets. Scientific Reports, 2018, 8, 3434.	3.3	43
84	Into the great wide open—10 years of genome-wide association studies. Cardiovascular Research, 2018, 114, 1189-1191.	3.8	3
85	A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure. American Journal of Human Genetics, 2018, 102, 375-400.	6.2	123
86	Biomarker-Guided Versus Guideline-Based Treatment of Patients With Heart Failure. Journal of the American College of Cardiology, 2018, 71, 386-398.	2.8	35
87	Proteomic diversity of highâ€density lipoprotein explains its association with clinical outcome in patients with heart failure. European Journal of Heart Failure, 2018, 20, 260-267.	7.1	30
88	Potassium and the use of renin–angiotensin–aldosterone system inhibitors in heart failure with reduced ejection fraction: data from BIOSTAT HF. European Journal of Heart Failure, 2018, 20, 923-930.	7.1	57
89	Fibroblast growth factor 23 is related to profiles indicating volume overload, poor therapy optimization and prognosis in patients with new-onset and worsening heart failure. International Journal of Cardiology, 2018, 253, 84-90.	1.7	55
90	Evidence for reduced susceptibility to cardiac bradycardias in South Asians compared with Caucasians. Heart, 2018, 104, 1350-1355.	2.9	7

#	Article	IF	Citations
91	Coronary angiography in worsening heart failure: determinants, findings and prognostic implications. Heart, 2018, 104, 606-613.	2.9	16
92	Using matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling in order to predict clinical outcomes of patients with heart failure. Clinical Proteomics, 2018, 15, 35.	2.1	6
93	Novel endotypes in heart failure: effects on guideline-directed medical therapy. European Heart Journal, 2018, 39, 4269-4276.	2.2	44
94	Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults. Journal of the American College of Cardiology, 2018, 72, 1883-1893.	2.8	557
95	Adult height and risk of 50 diseases: a combined epidemiological and genetic analysis. BMC Medicine, 2018, 16, 187.	5.5	60
96	Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction. International Journal of Cardiology, 2018, 271, 132-139.	1.7	140
97	<i>JCAD</i> , a Gene at the 10p11 Coronary Artery Disease Locus, Regulates Hippo Signaling in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1711-1722.	2.4	36
98	Daily remote ischaemic conditioning following acute myocardial infarction: a randomised controlled trial. Heart, 2018, 104, 1955-1962.	2.9	15
99	Waistâ€toâ€hip ratio and mortality in heart failure. European Journal of Heart Failure, 2018, 20, 1269-1277.	7.1	85
100	Exome-chip meta-analysis identifies novel loci associated with cardiac conduction, including ADAMTS6. Genome Biology, 2018, 19, 87.	8.8	47
101	ldentifying Pathophysiological Mechanisms in Heart Failure WithÂReduced Versus Preserved EjectionÂFraction. Journal of the American College of Cardiology, 2018, 72, 1081-1090.	2.8	199
102	Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nature Genetics, 2018, 50, 26-41.	21.4	286
103	Determinants of day–night difference in blood pressure, a comparison with determinants of daytime and night-time blood pressure. Journal of Human Hypertension, 2017, 31, 43-48.	2.2	9
104	Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nature Genetics, 2017, 49, 403-415.	21.4	492
105	Rare and low-frequency coding variants alter human adult height. Nature, 2017, 542, 186-190.	27.8	544
106	Coronary Artery Disease–Associated <i>LIPA</i> Coding Variant rs1051338 Reduces Lysosomal Acid Lipase Levels and Activity in Lysosomes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1050-1057.	2.4	32
107	Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases. JAMA Oncology, 2017, 3, 636.	7.1	376
108	Development and validation of multivariable models to predict mortality and hospitalization in patients with heart failure. European Journal of Heart Failure, 2017, 19, 627-634.	7.1	183

#	Article	IF	Citations
109	Association of Rare and Common Variation in the Lipoprotein Lipase Gene With Coronary Artery Disease. JAMA - Journal of the American Medical Association, 2017, 317, 937.	7.4	148
110	Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated WithÂCoronary ArteryÂDisease. Journal of the American College of Cardiology, 2017, 69, 823-836.	2.8	214
111	Discovery of novel heart rate-associated loci using the Exome Chip. Human Molecular Genetics, 2017, 26, 2346-2363.	2.9	29
112	Protein-Truncating Variants at the Cholesteryl Ester Transfer Protein Gene and Risk for Coronary Heart Disease. Circulation Research, 2017, 121, 81-88.	4.5	68
113	Loss of Cardioprotective Effects at the <i>ADAMTS7</i> Locus as a Result of Gene-Smoking Interactions. Circulation, 2017, 135, 2336-2353.	1.6	51
114	Risk Factors for Nonadherence to Antihypertensive Treatment. Hypertension, 2017, 69, 1113-1120.	2.7	150
115	Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nature Genetics, 2017, 49, 1113-1119.	21.4	260
116	Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study. Lancet Diabetes and Endocrinology,the, 2017, 5, 534-543.	11.4	84
117	ANGPTL3 Deficiency and Protection Against Coronary Artery Disease. Journal of the American College of Cardiology, 2017, 69, 2054-2063.	2.8	348
118	Determinants and clinical outcome of uptitration of ACE-inhibitors and beta-blockers in patients with heart failure: a prospective European study. European Heart Journal, 2017, 38, 1883-1890.	2.2	299
119	Impact of Selection Bias on Estimation of Subsequent Event Risk. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	28
120	The PCSK9-LDL Receptor Axis andÂOutcomes in Heart Failure. Journal of the American College of Cardiology, 2017, 70, 2128-2136.	2.8	43
121	A genomic exploration identifies mechanisms that may explain adverse cardiovascular effects of COX-2 inhibitors. Scientific Reports, 2017, 7, 10252.	3.3	16
122	Large-Scale Analysis of Determinants, Stability, and Heritability of High-Density Lipoprotein Cholesterol Efflux Capacity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1956-1962.	2.4	33
123	Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney. Hypertension, 2017, 70, .	2.7	123
124	Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nature Genetics, 2017, 49, 1385-1391.	21.4	571
125	A miR-327–FGF10–FGFR2-mediated autocrine signaling mechanism controls white fat browning. Nature Communications, 2017, 8, 2079.	12.8	52
126	Comparison of exercise testing and CMR measured myocardial perfusion reserve for predicting outcome in asymptomatic aortic stenosis: the PRognostic Importance of Microvascular Dysfunction in Aortic Stenosis (PRIMID AS) Study. European Heart Journal, 2017, 38, 1222-1229.	2.2	72

#	Article	IF	CITATIONS
127	Switching harmful visceral fat to beneficial energy combustion improves metabolic dysfunctions. JCI Insight, 2017, 2, e89044.	5.0	28
128	Mineralocorticoid receptor antagonist pattern of use in heart failure with reduced ejection fraction: findings from <scp>BIOSTATâ€CHF</scp> . European Journal of Heart Failure, 2017, 19, 1284-1293.	7.1	79
129	Genomic correlates of glatiramer acetate adverse cardiovascular effects lead to a novel locus mediating coronary risk. PLoS ONE, 2017, 12, e0182999.	2.5	5
130	The Coronary Artery Disease-associated Coding Variant in Zinc Finger C3HC-type Containing 1 (ZC3HC1) Affects Cell Cycle Regulation. Journal of Biological Chemistry, 2016, 291, 16318-16327.	3.4	15
131	Genetic Variation Associated with Longer Telomere Length Increases Risk of Chronic Lymphocytic Leukemia. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1043-1049.	2.5	61
132	Coding Variation in <i>ANGPTL4,LPL,</i> <ii>and<i>SVEP1</i><iand 1134-1144.<="" 2016,="" 374,="" coronary="" disease.="" england="" journal="" medicine,="" new="" of="" risk="" td="" the=""><td>27.0</td><td>427</td></iand></ii>	27.0	427
133	Cystatin C and Cardiovascular Disease. Journal of the American College of Cardiology, 2016, 68, 934-945.	2.8	109
134	Genomic prediction of coronary heart disease. European Heart Journal, 2016, 37, 3267-3278.	2.2	277
135	Analysis with the exome array identifies multiple new independent variants in lipid loci. Human Molecular Genetics, 2016, 25, 4094-4106.	2.9	19
136	<i>KLB</i> is associated with alcohol drinking, and its gene product \hat{l}^2 -Klotho is necessary for FGF21 regulation of alcohol preference. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14372-14377.	7.1	208
137	52 Genetic Loci Influencing MyocardialÂMass. Journal of the American College of Cardiology, 2016, 68, 1435-1448.	2.8	113
138	Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nature Genetics, 2016, 48, 1151-1161.	21.4	261
139	The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nature Genetics, 2016, 48, 1171-1184.	21.4	362
140	A genomic approach to therapeutic target validation identifies a glucose-lowering <i>GLP1R</i> variant protective for coronary heart disease. Science Translational Medicine, 2016, 8, 341ra76.	12.4	100
141	Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat. Nature Communications, 2016, 7, 12152.	12.8	84
142	The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nature Communications, 2016, 7, 11385.	12.8	117
143	Genetic variants linked to education predict longevity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13366-13371.	7.1	110
144	A systems <scp>BIOlogy</scp> Study to <scp>TAilored</scp> Treatment in Chronic Heart Failure: rationale, design, and baseline characteristics of <scp>BIOSTATâ€CHF</scp> . European Journal of Heart Failure, 2016, 18, 716-726.	7.1	149

#	Article	IF	CITATIONS
145	Platelet-Related Variants Identified by Exomechip Meta-analysis in 157,293 Individuals. American Journal of Human Genetics, 2016, 99, 40-55.	6.2	82
146	Remote ischaemic conditioning and remodelling following myocardial infarction: current evidence and future perspectives. Heart Failure Reviews, 2016, 21, 635-643.	3.9	6
147	Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science, 2016, 351, 1166-1171.	12.6	438
148	Endocrine vasculatures are preferable targets of an antitumor ineffective low dose of anti-VEGF therapy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4158-4163.	7.1	25
149	Causal Assessment of Serum Urate Levels inÂCardiometabolic Diseases Through a Mendelian Randomization Study. Journal of the American College of Cardiology, 2016, 67, 407-416.	2.8	138
150	Analysis of Gene-Gene Interactions among Common Variants in Candidate Cardiovascular Genes in Coronary Artery Disease. PLoS ONE, 2015, 10, e0117684.	2.5	8
151	Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation. PLoS Genetics, 2015, 11, e1005230.	3.5	77
152	Signatures of miR-181a on the Renal Transcriptome and Blood Pressure. Molecular Medicine, 2015, 21, 739-748.	4.4	48
153	<i>DCAF4</i> , a novel gene associated with leucocyte telomere length. Journal of Medical Genetics, 2015, 52, 157-162.	3.2	66
154	New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.	27.8	1,328
155	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	27.8	3,823
156	Age- and Sex-Specific Causal Effects of Adiposity on Cardiovascular Risk Factors. Diabetes, 2015, 64, 1841-1852.	0.6	63
157	Genetic variants primarily associated with type 2 diabetes are related to coronary artery disease risk. Atherosclerosis, 2015, 241, 419-426.	0.8	26
158	Runs of Homozygosity: Association with Coronary Artery Disease and Gene Expression in Monocytes and Macrophages. American Journal of Human Genetics, 2015, 97, 228-237.	6.2	37
159	Genetic Analysis of Leukocyte Type-I Interferon Production and Risk of Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1456-1462.	2.4	11
160	Statin treatment: can genetics sharpen the focus?. Lancet, The, 2015, 385, 2227-2229.	13.7	10
161	Meta-analysis of 65,734 Individuals Identifies TSPAN15 and SLC44A2 as Two Susceptibility Loci for Venous Thromboembolism. American Journal of Human Genetics, 2015, 96, 532-542.	6.2	222
162	Cumulative effects of common genetic variants on risk of sudden cardiac death. IJC Heart and Vasculature, 2015, 7, 88-91.	1.1	7

#	Article	IF	Citations
163	Mendelian randomization of blood lipids for coronary heart disease. European Heart Journal, 2015, 36, 539-550.	2.2	567
164	The impact of low-frequency and rare variants on lipid levels. Nature Genetics, 2015, 47, 589-597.	21.4	310
165	Renal Mechanisms of Association between Fibroblast Growth Factor 1 and Blood Pressure. Journal of the American Society of Nephrology: JASN, 2015, 26, 3151-3160.	6.1	20
166	Genetically Determined Height and Coronary Artery Disease. New England Journal of Medicine, 2015, 372, 1608-1618.	27.0	220
167	Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nature Genetics, 2015, 47, 1282-1293.	21.4	294
168	VEGF-B-Neuropilin-1 signaling is spatiotemporally indispensable for vascular and neuronal development in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5944-53.	7.1	33
169	A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nature Genetics, 2015, 47, 1121-1130.	21.4	2,054
170	Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature, 2015, 518, 102-106.	27.8	581
171	Prospective evaluation of two novel ECG-based restitution biomarkers for prediction of sudden cardiac death risk in ischaemic cardiomyopathy. Heart, 2014, 100, 1878-1885.	2.9	25
172	Mendelian randomization studies in coronary artery disease. European Heart Journal, 2014, 35, 1917-1924.	2.2	169
173	Resuscitated cardiac arrest and prognosis following myocardial infarction. Heart, 2014, 100, 1125-1132.	2.9	23
174	Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease. PLoS Genetics, 2014, 10, e1004502.	3.5	192
175	Leukocyte telomere length associates with prospective mortality independent of immune-related parameters and known genetic markers. International Journal of Epidemiology, 2014, 43, 878-886.	1.9	95
176	Two Further Blood Pressure Loci Identified in Ion Channel Genes With a Genecentric Approach. Circulation: Cardiovascular Genetics, 2014, 7, 873-879.	5.1	7
177	Gene-centric Meta-analysis in 87,736 Individuals of European Ancestry Identifies Multiple Blood-Pressure-Related Loci. American Journal of Human Genetics, 2014, 94, 349-360.	6.2	158
178	Coronary artery disease predisposing haplogroup I of the YÂchromosome, aggression and sex steroids – Genetic associationÂanalysis. Atherosclerosis, 2014, 233, 160-164.	0.8	21
179	DNA methylation and body-mass index: a genome-wide analysis. Lancet, The, 2014, 383, 1990-1998.	13.7	686
180	Shared Genetic Susceptibility to Ischemic Stroke and Coronary Artery Disease. Stroke, 2014, 45, 24-36.	2.0	302

#	Article	IF	Citations
181	Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age. Human Molecular Genetics, 2014, 23, 4420-4432.	2.9	227
182	Modulation of age-related insulin sensitivity by VEGF-dependent vascular plasticity in adipose tissues. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14906-14911.	7.1	52
183	Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 2014, 46, 1173-1186.	21.4	1,818
184	Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nature Genetics, 2014, 46, 826-836.	21.4	281
185	Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk. Nature Genetics, 2014, 46, 731-735.	21.4	161
186	Discovery and refinement of loci associated with lipid levels. Nature Genetics, 2013, 45, 1274-1283.	21.4	2,641
187	Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature, 2013, 504, 432-436.	27.8	230
188	Secretory Phospholipase A2-IIA and Cardiovascular Disease. Journal of the American College of Cardiology, 2013, 62, 1966-1976.	2.8	115
189	Large-scale association analysis identifies new risk loci for coronary artery disease. Nature Genetics, 2013, 45, 25-33.	21.4	1,439
190	Association Between the Chromosome 9p21 Locus and Angiographic Coronary Artery Disease Burden. Journal of the American College of Cardiology, 2013, 61, 957-970.	2.8	58
191	Identification of seven loci affecting mean telomere length and their association with disease. Nature Genetics, 2013, 45, 422-427.	21.4	808
192	Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nature Genetics, 2013, 45, 501-512.	21.4	578
193	Identification of heart rate–associated loci and their effects on cardiac conduction and rhythm disorders. Nature Genetics, 2013, 45, 621-631.	21.4	282
194	Meta-analysis of telomere length in 19 713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. European Journal of Human Genetics, 2013, 21, 1163-1168.	2.8	380
195	Genetic Predisposition to Higher Blood Pressure Increases Coronary Artery Disease Risk. Hypertension, 2013, 61, 995-1001.	2.7	70
196	Genome-Wide Haplotype Analysis of Cis Expression Quantitative Trait Loci in Monocytes. PLoS Genetics, 2013, 9, e1003240.	3.5	53
197	Male-Specific Region of the Y Chromosome and Cardiovascular Risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1722-1727.	2.4	57
198	Exome Sequencing and Directed Clinical Phenotyping Diagnose Cholesterol Ester Storage Disease Presenting as Autosomal Recessive Hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2909-2914.	2.4	87

#	Article	IF	CITATIONS
199	126 CHROMOSOME 9P21 LOCUS AND ANGIOGRAPHIC CORONARY ARTERY DISEASE BURDEN: A COLLABORATIVE META-ANALYSIS. Heart, 2013, 99, A75.1-A75.	2.9	0
200	Urotensin-II System in Genetic Control of Blood Pressure and Renal Function. PLoS ONE, 2013, 8, e83137.	2.5	14
201	Novel Loci Associated with Increased Risk of Sudden Cardiac Death in the Context of Coronary Artery Disease. PLoS ONE, 2013, 8, e59905.	2.5	30
202	Cardiac Expression of <i>ms1/STARS</i> , a Novel Gene Involved in Cardiac Development and Disease, Is Regulated by GATA4. Molecular and Cellular Biology, 2012, 32, 1830-1843.	2.3	12
203	Comparative analysis of genome-wide association studies signals for lipids, diabetes, and coronary heart disease: Cardiovascular Biomarker Genetics Collaboration. European Heart Journal, 2012, 33, 393-407.	2.2	93
204	Inheritance of coronary artery disease in men: an analysis of the role of the Y chromosome. Lancet, The, 2012, 379, 915-922.	13.7	179
205	Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet, The, 2012, 380, 572-580.	13.7	1,937
206	Genetic Associations for Activated Partial Thromboplastin Time and Prothrombin Time, their Gene Expression Profiles, and Risk of Coronary Artery Disease. American Journal of Human Genetics, 2012, 91, 152-162.	6.2	85
207	STARS Is Essential to Maintain Cardiac Development and Function In Vivo via a SRF Pathway. PLoS ONE, 2012, 7, e40966.	2.5	15
208	A structural and functional dissection of the cardiac stress response factor MS1. Proteins: Structure, Function and Bioinformatics, 2012, 80, 398-409.	2.6	8
209	Genetic associations with lipoprotein subfractions provide information on their biological nature. Human Molecular Genetics, 2012, 21, 1433-1443.	2.9	28
210	A Genome-Wide Association Study for Coronary Artery Disease Identifies a Novel Susceptibility Locus in the Major Histocompatibility Complex. Circulation: Cardiovascular Genetics, 2012, 5, 217-225.	5.1	125
211	Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nature Genetics, 2012, 44, 890-894.	21.4	295
212	Human metabolic individuality in biomedical and pharmaceutical research. Nature, 2011, 477, 54-60.	27.8	916
213	Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet, The, 2011, 377, 383-392.	13.7	466
214	Large-Scale Candidate Gene Analysis of HDL Particle Features. PLoS ONE, 2011, 6, e14529.	2.5	32
215	Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nature Genetics, 2011, 43, 333-338.	21.4	1,685
216	A Genome-Wide Association Study Identifies <i>LIPA</i> as a Susceptibility Gene for Coronary Artery Disease. Circulation: Cardiovascular Genetics, 2011, 4, 403-412.	5.1	130

#	Article	IF	Citations
217	Abdominal Aortic Aneurysm Is Associated with a Variant in Low-Density Lipoprotein Receptor-Related Protein 1. American Journal of Human Genetics, 2011, 89, 619-627.	6.2	185
218	Blood Pressure Loci Identified with a Gene-Centric Array. American Journal of Human Genetics, 2011, 89, 688-700.	6.2	159
219	The Epithelial Sodium Channel Î ³ -Subunit Gene and Blood Pressure. Hypertension, 2011, 58, 1073-1078.	2.7	19
220	Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nature Genetics, 2011, 43, 1005-1011.	21.4	403
221	Prospective study of insulin-like growth factor-I, insulin-like growth factor-binding protein 3, genetic variants in the IGF1 and IGFBP3 genes and risk of coronary artery disease. International Journal of Molecular Epidemiology and Genetics, 2011, 2, 261-85.	0.4	8
222	An evaluation of inflammatory gene polymorphisms in sibships discordant for premature coronary artery disease: the GRACE-IMMUNE study. BMC Medicine, 2010, 8, 5.	5.5	15
223	FGF21 signalling pathway and metabolic traits – genetic association analysis. European Journal of Human Genetics, 2010, 18, 1344-1348.	2.8	22
224	Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 2010, 466, 707-713.	27.8	3,249
225	A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature, 2010, 467, 460-464.	27.8	271
226	Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature, 2010, 467, 832-838.	27.8	1,789
227	Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nature Genetics, 2010, 42, 436-440.	21.4	581
228	Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 2010, 42, 937-948.	21.4	2,634
229	Telomere length and outcome in heart failure. Annals of Medicine, 2010, 42, 36-44.	3.8	37
230	Coronary Artery Disease–Related Genetic Variant on Chromosome 10q11 Is Associated With Carotid Intima-Media Thickness and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2678-2683.	2.4	29
231	The Relationship Between Plasma Angiopoietin-like Protein 4 Levels, Angiopoietin-like Protein 4 Genotype, and Coronary Heart Disease Risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2277-2282.	2.4	64
232	Genetic Variants Influencing Circulating Lipid Levels and Risk of Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2264-2276.	2.4	369
233	Common Variants at 10 Genomic Loci Influence Hemoglobin A1C Levels via Glycemic and Nonglycemic Pathways. Diabetes, 2010, 59, 3229-3239.	0.6	387
234	Genetics of myocardial infarction: a progress report. European Heart Journal, 2010, 31, 918-925.	2.2	90

#	Article	IF	CITATIONS
235	Sorting Out Cholesterol and Coronary Artery Disease. New England Journal of Medicine, 2010, 363, 2462-2463.	27.0	32
236	Genetic Architecture of Ambulatory Blood Pressure in the General Population. Hypertension, 2010, 56, 1069-1076.	2.7	64
237	Lack of Association Between the Trp719Arg Polymorphism in Kinesin-Like Protein-6 and Coronary Artery Disease in 19 Case-Control Studies. Journal of the American College of Cardiology, 2010, 56, 1552-1563.	2.8	84
238	Genetic Regulation of Serum Phytosterol Levels and Risk of Coronary Artery Disease. Circulation: Cardiovascular Genetics, 2010, 3, 331-339.	5.1	141
239	Common variants near TERC are associated with mean telomere length. Nature Genetics, 2010, 42, 197-199.	21.4	296
240	Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease. Atherosclerosis, 2010, 208, 183-189.	0.8	141
241	The personal genomeâ€"the future of personalised medicine?. Lancet, The, 2010, 375, 1497-1498.	13.7	52
242	Design of the Coronary ARtery Disease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Study. Circulation: Cardiovascular Genetics, 2010, 3, 475-483.	5.1	159
243	Transcription profiling in human platelets reveals LRRFIP1 as a novel protein regulating platelet function. Blood, 2010, 116, 4646-4656.	1.4	90
244	Large Scale Association Analysis of Novel Genetic Loci for Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 774-780.	2.4	140
245	A Common Variant in Low-Density Lipoprotein Receptor–Related Protein 6 Gene (LRP6) Is Associated With LDL-Cholesterol. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1316-1321.	2.4	37
246	Genetic Loci Associated With C-Reactive Protein Levels and Risk of Coronary Heart Disease. JAMA - Journal of the American Medical Association, 2009, 302, 37.	7.4	544
247	A Genome-Wide Association Study Reveals Variants in ARL15 that Influence Adiponectin Levels. PLoS Genetics, 2009, 5, e1000768.	3.5	148
248	Myocyte stress 1 plays an important role in cellular hypertrophy and protection against apoptosis. FEBS Letters, 2009, 583, 2964-2967.	2.8	23
249	The impact of newly identified loci on coronary heart disease, stroke and total mortality in the MORGAM prospective cohorts. Genetic Epidemiology, 2009, 33, 237-246.	1.3	77
250	Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nature Genetics, 2009, 41, 25-34.	21.4	1,572
251	New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nature Genetics, 2009, 41, 280-282.	21.4	440
252	Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nature Genetics, 2009, 41, 283-285.	21.4	427

#	Article	IF	Citations
253	Genome-wide association study identifies eight loci associated with blood pressure. Nature Genetics, 2009, 41, 666-676.	21.4	1,104
254	Association analysis of IL-12B and IL-23R polymorphisms in myocardial infarction. Journal of Molecular Medicine, 2008, 86, 99-103.	3.9	20
255	Lack of association of genetic variants in the LRP8 gene with familial and sporadic myocardial infarction. Journal of Molecular Medicine, 2008, 86, 1163-1170.	3.9	6
256	The novel genetic variant predisposing to coronary artery disease in the region of the PSRC1 and CELSR2 genes on chromosome 1 associates with serum cholesterol. Journal of Molecular Medicine, 2008, 86, 1233-1241.	3.9	80
257	Concept, Design and Implementation of a Cardiovascular Gene-Centric 50 K SNP Array for Large-Scale Genomic Association Studies. PLoS ONE, 2008, 3, e3583.	2.5	339
258	Coronary Artery Disease–Associated Locus on Chromosome 9p21 and Early Markers of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1679-1683.	2.4	80
259	Genome-wide Association Study Identifies Genes for Biomarkers of Cardiovascular Disease: Serum Urate and Dyslipidemia. American Journal of Human Genetics, 2008, 82, 139-149.	6.2	397
260	Association Between the Coronary Artery Disease Risk Locus on Chromosome 9p21.3 and Abdominal Aortic Aneurysm. Circulation: Cardiovascular Genetics, 2008, 1, 39-42.	5.1	63
261	Biological ageing and cardiovascular disease. Heart, 2008, 94, 537-539.	2.9	115
262	Elevated C-Reactive Protein in Atherosclerosis — Chicken or Egg?. New England Journal of Medicine, 2008, 359, 1953-1955.	27.0	80
263	Chromosome 9p21 and Cardiovascular Disease. Circulation: Cardiovascular Genetics, 2008, 1, 81-84.	5.1	36
264	Common Variants in Genes Underlying Monogenic Hypertension and Hypotension and Blood Pressure in the General Population. Hypertension, 2008, 51, 1658-1664.	2.7	104
265	Repeated Replication and a Prospective Meta-Analysis of the Association Between Chromosome 9p21.3 and Coronary Artery Disease. Circulation, 2008, 117, 1675-1684.	1.6	356
266	A regulatory SNP of the BICD1 gene contributes to telomere length variation in humans. Human Molecular Genetics, 2008, 17, 2518-2523.	2.9	58
267	Lifelong Reduction of LDL-Cholesterol Related to a Common Variant in the LDL-Receptor Gene Decreases the Risk of Coronary Artery Disease—A Mendelian Randomisation Study. PLoS ONE, 2008, 3, e2986.	2.5	137
268	Genomewide Association Analysis of Coronary Artery Disease. New England Journal of Medicine, 2007, 357, 443-453.	27.0	1,865
269	Effect of a common X-linked angiotensin II type 2-receptor gene polymorphism (â^1332 G/A) on the occurrence of premature myocardial infarction and stenotic atherosclerosis requiring revascularization. Atherosclerosis, 2007, 195, e32-e38.	0.8	13
270	Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet, The, 2007, 369, 107-114.	13.7	671

#	Article	IF	Citations
271	Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes. Science, 2007, 316, 1336-1341.	12.6	2,040
272	Enhanced linkage of a locus on chromosome 2 to premature coronary artery disease in the absence of hypercholesterolemia. European Journal of Human Genetics, 2007, 15, 313-319.	2.8	16
273	Beyond "misunderstanding― Written information and decisions about taking part in a genetic epidemiology study. Social Science and Medicine, 2007, 65, 2212-2222.	3.8	120
274	Mapping of genetic determinants of the sympathoneural response to stress. Physiological Genomics, 2005, 20, 183-187.	2.3	13
275	Association of <i>WNK1</i> Gene Polymorphisms and Haplotypes With Ambulatory Blood Pressure in the General Population. Circulation, 2005, 112, 3423-3429.	1.6	124
276	Mapping of a Major Locus that Determines Telomere Length in Humans. American Journal of Human Genetics, 2005, 76, 147-151.	6.2	243
277	A Genomewide Linkage Study of 1,933 Families Affected by Premature Coronary Artery Disease: The British Heart Foundation (BHF) Family Heart Study. American Journal of Human Genetics, 2005, 77, 1011-1020.	6.2	105
278	The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nature Genetics, 2004, 36, 233-239.	21.4	859
279	Mapping of genetic loci predisposing to hypertriglyceridaemia in the hereditary hypertriglyceridaemic rat: analysis of genetic association with related traits of the insulin resistance syndrome. Diabetologia, 2003, 46, 352-358.	6.3	20
280	Premature coronary artery disease shows no evidence of linkage to loci encoding for tissue inhibitors of matrix metalloproteinases. Journal of Human Genetics, 2003, 48, 508-513.	2.3	2
281	White Cell Telomere Length and Risk of Premature Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 842-846.	2.4	544
282	ms1, a novel stress-responsive, muscle-specific gene that is up-regulated in the early stages of pressure overload-induced left ventricular hypertrophy. FEBS Letters, 2002, 521, 100-104.	2.8	32
283	Corrigendum to: ms1, a novel stress-responsive, muscle-specific gene that is up-regulated in the early stages of pressure overload-induced left ventricular hypertrophy (FEBS 26169). FEBS Letters, 2002, 528, 283-283.	2.8	1
284	The â°'1185 A/G and â°'1051 G/A dimorphisms in the von Willebrand factor gene promoter and risk of myocardial infarction. British Journal of Haematology, 2001, 115, 701-706.	2.5	19
285	Genetic Dissection of Region Around the Sa Gene on Rat Chromosome 1. Hypertension, 2001, 38, 216-221.	2.7	57
286	Pharmacogenomics of hypertension: a realizable goal?. Clinical Science, 2000, 99, 231-232.	4.3	5
287	Â-adducin polymorphism in hypertensives of South African ancestry. American Journal of Hypertension, 2000, 13, 719-723.	2.0	40
288	Pharmacogenomics of hypertension: a realizable goal?. Clinical Science, 2000, 99, 231-2.	4.3	0

#	Article	IF	CITATIONS
289	A positive parental history of high blood pressure. Journal of Human Hypertension, 1998, 12, 209-210.	2.2	O
290	A simple and efficient method for the isolation of differentially expressed genes 1 1Edited by J. Karn. Journal of Molecular Biology, 1998, 284, 1391-1398.	4.2	17
291	Successful Isolation of a Rat Chromosome 1 Blood Pressure Quantitative Trait Locus in Reciprocal Congenic Strains. Hypertension, 1998, 32, 639-646.	2.7	55
292	Molecular genetics of coronary artery disease: measuring the phenotype. Clinical Science, 1998, 95, 645-646.	4.3	21
293	Molecular genetics of coronary artery disease: measuring the phenotype. Clinical Science, 1998, 95, 645-6.	4.3	6
294	Glycoprotein Illa polymorphism and risk of myocardial infarction. Cardiovascular Research, 1997, 33, 693-697.	3.8	63
295	Tissue Expression of Components of the Renin—Angiotensin System in Experimental Post-Infarction Heart Failure in Rats: Effects of Heart Failure and Angiotensin-Converting Enzyme Inhibitor Treatment. Clinical Science, 1997, 92, 455-465.	4.3	11
296	Normotensive blood pressure in mice with a disrupted renin Ren-1d gene. Transgenic Research, 1997, 6, 191-196.	2.4	13
297	Analysis of Quantitative Trait Loci for Blood Pressure on Rat Chromosomes 2 and 13. Hypertension, 1996, 28, 1118-1122.	2.7	59
298	The SA Gene: Predisposition to Hypertension and Renal Function in Man. Clinical Science, 1995, 88, 665-670.	4.3	14
299	Insertion/deletion polymorphism in the angiotensin-converting enzyme gene and risk of restenosis after coronary angioplasty. Lancet, The, 1995, 345, 1013-1016.	13.7	72
300	SA gene and hypertension. Journal of Human Hypertension, 1995, 9, 501-3.	2.2	3
301	Molecular genetics of susceptibility to the development of hypertension. British Medical Bulletin, 1994, 50, 260-271.	6.9	13
302	Expression of components of the RAS during prolonged blockade at different levels in primates. American Journal of Physiology - Endocrinology and Metabolism, 1994, 267, E612-E619.	3.5	4
303	Chromosomal Assignment of the Human SA Gene to 16p13.11 and Demonstration of Its Expression in the Kidney. Biochemical and Biophysical Research Communications, 1994, 199, 862-868.	2.1	13
304	The Rat SA Gene Shows Genotype-Dependent Tissue-Specific Expression. Clinical Science, 1994, 87, 1-4.	4.3	14
305	Ventricular aneurysmectomy: indications, operative findings and outcome at a single centre. The Quarterly Journal of Medicine, 1994, 87, 41-8.	1.0	2
306	Genetic determinants of diastolic and pulse pressure map to different loci in Lyon hypertensive rats. Nature Genetics, 1993, 3, 354-357.	21.4	126

#	Article	IF	CITATIONS
307	A gene differentially expressed in the kidney of the spontaneously hypertensive rat cosegregates with increased blood pressure Journal of Clinical Investigation, 1993, 92, 1099-1103.	8.2	91
308	The renin-angiotensin system in cardiovascular physiology and disease: new insights from molecular studies. The Quarterly Journal of Medicine, 1993, 86, 755-60.	1.0	0
309	Elucidating the genetic basis of spontaneous hypertension: a perspective. Journal of Human Hypertension, 1993, 7, 167-71.	2.2	2
310	Molecular Biology of the Vascular Renin-Angiotensin System. Journal of Vascular Research, 1991, 28, 210-216.	1.4	6
311	Renal and extra-renal levels of renin mRNA in experimental hypertension. Clinical Science, 1991, 80, 339-344.	4.3	20
312	Molecular biology of the renin-angiotensin system: implications for hypertension and beyond. Journal of Cardiovascular Pharmacology, 1991, 18 Suppl 2, S1-6.	1.9	1
313	A Widespread Abnormality of Renin Gene Expression in the Spontaneously Hypertensive Rat: Modulation in Some Tissues with the Development of Hypertension. Clinical Science, 1989, 77, 629-636.	4.3	50