Jean-Francois Fonteneau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3968433/publications.pdf

Version: 2024-02-01

60 papers

2,764 citations

236925 25 h-index 51 g-index

62 all docs 62 docs citations 62 times ranked 3956 citing authors

#	Article	IF	CITATIONS
1	Human MuStem cells repress T-cell proliferation and cytotoxicity through both paracrine and contact-dependent pathways. Stem Cell Research and Therapy, 2022, 13, 7.	5.5	2
2	Homozygous Co-Deletion of Type I Interferons and CDKN2A Genes in Thoracic Cancers: Potential Consequences for Therapy. Frontiers in Oncology, 2021, 11, 695770.	2.8	9
3	Endogenous retrovirus expression activates type-l interferon signaling in an experimental mouse model of mesothelioma development. Cancer Letters, 2021, 507, 26-38.	7.2	18
4	STK11/LKB1 Modulation of the Immune Response in Lung Cancer: From Biology to Therapeutic Impact. Cells, 2021, 10, 3129.	4.1	30
5	Frequent Homozygous Deletions of Type I Interferon Genes in Pleural Mesothelioma Confer Sensitivity to Oncolytic Measles Virus. Journal of Thoracic Oncology, 2020, 15, 827-842.	1.1	44
6	Cisplatin unleashes Toll-like receptor 3-mediated apoptosis through the downregulation of c-FLIP in malignant mesothelioma. Cancer Letters, 2020, 472, 29-39.	7.2	15
7	MicroRNAs in Tumor Exosomes Drive Immune Escape in Melanoma. Cancer Immunology Research, 2020, 8, 255-267.	3.4	98
8	High Oncolytic Activity of a Double-Deleted Vaccinia Virus Copenhagen Strain against Malignant Pleural Mesothelioma. Molecular Therapy - Oncolytics, 2020, 18, 573-578.	4.4	6
9	Reply to: Oncolytic Viral Therapy for Malignant Pleural Mesothelioma. Journal of Thoracic Oncology, 2020, 15, e113-e116.	1.1	2
10	Involvement of the M-CSF/IL-34/CSF-1R pathway in malignant pleural mesothelioma. , 2020, 8, e000182.		32
11	A Functional Assay to Determine the Capacity of Oncolytic Viruses to Induce Immunogenic Tumor Cell Death. Methods in Molecular Biology, 2020, 2058, 127-132.	0.9	O
12	Oncolytic viruses sensitize human tumor cells for NY-ESO-1 tumor antigen recognition by CD4+ effector T cells Oncolmmunology, 2018, 7, e1407897.	4.6	22
13	p53 regulates CD46 expression and measles virus infection in myeloma cells. Blood Advances, 2018, 2, 3492-3505.	5.2	17
14	Dysfunction of HPV16-specific CD8+ T cells derived from oropharyngeal tumors is related to the expression of Tim-3 but not PD-1. Oral Oncology, 2018, 82, 75-82.	1.5	13
15	Abstract 1002: Dysfunction of HPV16-specific CD8+ T cells derived from oropharyngeal tumors is related to the expression of Tim-3 but not PD-1., 2018,,.		0
16	Oncolytic measles virus induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cytotoxicity by human myeloid and plasmacytoid dendritic cells. Oncolmmunology, 2017, 6, e1261240.	4.6	25
17	Inhibition of effector antigen-specific T cells by intradermal administration of heme oxygenase-1		10
	inducers. Journal of Autoimmunity, 2017, 81, 44-55.	6.5	10

#	Article	IF	Citations
19	Modulation of the Type I Interferon Response Defines the Sensitivity of Human Melanoma Cells to Oncolytic Measles Virus. Current Gene Therapy, 2017, 16, 419-428.	2.0	25
20	Pleural Effusions from Patients with Mesothelioma Induce Recruitment of Monocytes and Their Differentiation into M2 Macrophages. Journal of Thoracic Oncology, 2016, 11, 1765-1773.	1.1	63
21	The Tumor Antigen NY-ESO-1 Mediates Direct Recognition of Melanoma Cells by CD4+ T Cells after Intercellular Antigen Transfer. Journal of Immunology, 2016, 196, 64-71.	0.8	47
22	Oncolytic immunotherapy: The new clinical outbreak. Oncolmmunology, 2016, 5, e1066961.	4.6	5
23	Characterization of preneoplastic and neoplastic rat mesothelial cell lines: the involvement of TETs, DNMTs, and 5-hydroxymethylcytosine. Oncotarget, 2016, 7, 34664-34687.	1.8	14
24	Oncolytic virotherapy for human malignant mesothelioma: recent advances. Oncolytic Virotherapy, 2015, 4, 133.	6.0	8
25	Human natural killer cells promote crossâ€presentation of tumor cellâ€derived antigens by dendritic cells. International Journal of Cancer, 2015, 136, 1085-1094.	5.1	55
26	Sensitivity of human pleural mesothelioma to oncolytic measles virus depends on defects of the type I interferon response. Oncotarget, 2015, 6, 44892-44904.	1.8	37
27	A Spliced Antigenic Peptide Comprising a Single Spliced Amino Acid Is Produced in the Proteasome by Reverse Splicing of a Longer Peptide Fragment followed by Trimming. Journal of Immunology, 2014, 192, 1962-1971.	0.8	72
28	New histone deacetylase inhibitors improve cisplatin antitumor properties against thoracic cancer cells. Oncotarget, 2014, 5, 4504-4515.	1.8	22
29	Measles Virus Vaccine–Infected Tumor Cells Induce Tumor Antigen Cross-Presentation by Human Plasmacytoid Dendritic Cells. Clinical Cancer Research, 2013, 19, 1147-1158.	7.0	100
30	Requirement of tumor-associated antigen-specific CD4 ⁺ T cells for an efficient dendritic cell vaccine in antitumor immunotherapy. Immunotherapy, 2013, 5, 565-567.	2.0	7
31	Attenuated measles virus used as an oncolytic virus activates myeloid and plasmacytoid dendritic cells. Oncolmmunology, 2013, 2, e24212.	4.6	17
32	MUC1-Specific Cytotoxic T Lymphocytes in Cancer Therapy: Induction and Challenge. BioMed Research International, 2013, 2013, 1-10.	1.9	36
33	Natural Oncolytic Activity of Live-Attenuated Measles Virus against Human Lung and Colorectal Adenocarcinomas. BioMed Research International, 2013, 2013, 1-11.	1.9	36
34	Antitumor Virotherapy by Attenuated Measles Virus (MV). Biology, 2013, 2, 587-602.	2.8	16
35	Purification of circulating plasmacytoid dendritic cells using counterflow centrifugal elutriation and immunomagnetic beads. Cytotherapy, 2012, 14, 887-896.	0.7	14
36	Human dendritic cells sequentially matured with CD4+ T cells as a secondary signal favor CTL and long-term T memory cell responses. Biological Research, 2012, 45, 33-43.	3.4	6

#	Article	IF	Citations
37	Downregulation of MUC1 expression and its recognition by CD8 ⁺ T cells on the surface of malignant pleural mesothelioma cells treated with HDACi. European Journal of Immunology, 2012, 42, 783-789.	2.9	12
38	Vaccination with epigenetically treated mesothelioma cells induces immunisation and blocks tumour growth. Vaccine, 2011 , 29 , 5534 - 5543 .	3.8	14
39	A 5-aza-2'-deoxycytidine/valproate combination induces cytotoxic T-cell response against mesothelioma. European Respiratory Journal, 2011, 38, 1105-1116.	6.7	39
40	Recognition of pleural mesothelioma by mucin-1(950-958)/human leukocyte antigen A*0201-specific CD8+ T-cells. European Respiratory Journal, 2011, 38, 1117-1126.	6.7	14
41	Dendritic cell preparation for immunotherapeutic interventions. Immunotherapy, 2009, 1, 289-302.	2.0	17
42	A HLA-Cw*0701 restricted Melan-A/MART1 epitope presented by melanoma tumor cells to CD8+ tumor infiltrating lymphocytes. Cancer Immunology, Immunotherapy, 2008, 57, 745-752.	4.2	7
43	Synthesis of Glycoclusterâ^'Tumor Antigenic Peptide Conjugates for Dendritic Cell Targeting. Bioconjugate Chemistry, 2007, 18, 1547-1554.	3.6	38
44	A HLA-DQ5 restricted Melan-A/MART-1 epitope presented by melanoma tumor cells to CD4+ T lymphocytes. Cancer Immunology, Immunotherapy, 2007, 56, 1565-1575.	4.2	10
45	Dendritic Cells Expand Epstein Barr Virus Specific CD8+ T Cell Responses More Efficiently Than EBV Transformed B Cells. Human Immunology, 2005, 66, 938-949.	2.4	21
46	Human Immunodeficiency Virus Type 1 Activates Plasmacytoid Dendritic Cells and Concomitantly Induces the Bystander Maturation of Myeloid Dendritic Cells. Journal of Virology, 2004, 78, 5223-5232.	3.4	305
47	Activation of influenza virus–specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood, 2003, 101, 3520-3526.	1.4	311
48	Epstein-Barr Nuclear Antigen 1-Specific CD4+ Th1 Cells Kill Burkitt's Lymphoma Cells. Journal of Immunology, 2002, 169, 1593-1603.	0.8	155
49	Amplification of low-frequency antiviral CD8 T cell responses using autologous dendritic cells. Aids, 2002, 16, 171-180.	2.2	39
50	Activation of HIV-1 specific CD4 and CD8 T cells by human dendritic cells: roles for cross-presentation and non-infectious HIV-1 virus. Aids, 2002, 16, 1319-1329.	2.2	102
51	A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: implications for immunotherapy. Vaccine, 2002, 20, A8-A22.	3.8	175
52	Interactions between dead cells and dendritic cells in the induction of antiviral CTL responses. Current Opinion in Immunology, 2002, 14, 471-477.	5.5	56
53	Interactions of viruses with dendritic cells. , 2001, , 505-522.		3
54	Dendritic Cell–Dead Cell Interactions: Implications and Relevance for Immunotherapy. Journal of Immunotherapy, 2001, 24, 294-304.	2.4	22

#	Article	IF	CITATIONS
55	Efficiency of cross presentation of vaccinia virus-derived antigens by human dendritic cells. European Journal of Immunology, 2001, 31, 3432-3442.	2.9	92
56	Generation of high quantities of viral and tumor-specific human CD4+ and CD8+ T-cell clones using peptide pulsed mature dendritic cells. Journal of Immunological Methods, 2001, 258, 111-126.	1.4	89
57	EBNA1-specific CD4+ T cells in healthy carriers of Epstein-Barr virus are primarily Th1 in function. Journal of Clinical Investigation, 2001, 107, 121-130.	8.2	109
58	Requirement of Mature Dendritic Cells for Efficient Activation of Influenza A-Specific Memory CD8+ T Cells. Journal of Immunology, 2000, 165, 1182-1190.	0.8	123
59	Optimal activation of tumor-reactive T cells by selected antigenic peptide analogues. International Immunology, 1999, 11, 1971-1980.	4.0	49
60	LFA-3 co-stimulates cytokine secretion by cytotoxic T lymphocytes by providing a TCR-independent activation signal. European Journal of Immunology, 1998, 28, 1322-1331.	2.9	38