
Mei-Sze Chua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3967288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NIR-II imaging of hepatocellular carcinoma based on a humanized anti-GPC3 antibody. RSC Medicinal Chemistry, 2022, 13, 90-97.	3.9	8
2	Exploring Biomolecular Interaction Between the Molecular Chaperone Hsp90 and Its Client Protein Kinase Cdc37 using Field-Effect Biosensing Technology. Journal of Visualized Experiments, 2022, , .	0.3	2
3	A Humanized Anti-GPC3 Antibody for Immuno-Positron Emission Tomography Imaging of Orthotopic Mouse Model of Patient-Derived Hepatocellular Carcinoma Xenografts. Cancers, 2021, 13, 3977.	3.7	8
4	Harnessing big â€~omics' data and Al for drug discovery in hepatocellular carcinoma. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 238-251.	17.8	90
5	An NIR-II/MR dual modal nanoprobe for liver cancer imaging. Nanoscale, 2020, 12, 11510-11517.	5.6	41
6	SOCS5 inhibition induces autophagy to impair metastasis in hepatocellular carcinoma cells via the PI3K/Akt/mTOR pathway. Cell Death and Disease, 2019, 10, 612.	6.3	84
7	An Automated, Quantitative, and Multiplexed Assay Suitable for Point-of-Care Hepatitis B Virus Diagnostics. Scientific Reports, 2019, 9, 15615.	3.3	24
8	<p>High Inflammatory Factor Grading Predicts Poor Disease-Free Survival in AJCC Stage I-II Hepatocellular Carcinoma Patients After RO Resection</p> . Cancer Management and Research, 2019, Volume 11, 10623-10632.	1.9	1
9	Computational Discovery of Niclosamide Ethanolamine, a Repurposed Drug Candidate That Reduces Growth of Hepatocellular Carcinoma Cells InÂVitro and in Mice by Inhibiting Cell Division Cycle 37 Signaling. Gastroenterology, 2017, 152, 2022-2036.	1.3	81
10	5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages. Cell Research, 2017, 27, 1231-1242.	12.0	200
11	A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature, 2017, 552, 57-62.	27.8	366
12	Reversal of cancer gene expression correlates with drug efficacy and reveals therapeutic targets. Nature Communications, 2017, 8, 16022.	12.8	151
13	Suppressing the <scp>CDC</scp> 37 cochaperone in hepatocellular carcinoma cells inhibits cell cycle progression and cell growth. Liver International, 2015, 35, 1403-1415.	3.9	19
14	Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells. Oncotarget, 2015, 6, 25390-25401.	1.8	77
15	NDRG1 promotes growth of hepatocellular carcinoma cells by directly interacting with GSK-3Î ² and Nur77 to prevent l ² -catenin degradation. Oncotarget, 2015, 6, 29847-29859.	1.8	37
16	Suppression of ATAD2 inhibits hepatocellular carcinoma progression through activation of p53- and p38-mediated apoptotic signaling. Oncotarget, 2015, 6, 41722-41735.	1.8	26
17	Novel celastrol derivatives inhibit the growth of hepatocellular carcinoma patient-derived xenografts. Oncotarget, 2014, 5, 5819-5831.	1.8	45
18	Imaging of hepatocellular carcinoma patient-derived xenografts using 89Zr-labeled anti-glypican-3 monoclonal antibody. Biomaterials, 2014, 35, 6964-6971.	11.4	39

Mei-Sze Chua

#	Article	IF	CITATIONS
19	Suppressing N-Myc downstream regulated gene 1 reactivates senescence signaling and inhibits tumor growth in hepatocellular carcinoma. Carcinogenesis, 2014, 35, 915-922.	2.8	45
20	Epigenetics in hepatocellular carcinoma: An update and future therapy perspectives. World Journal of Gastroenterology, 2014, 20, 333.	3.3	90
21	Molecular Imaging of Hepatocellular Carcinoma Xenografts with Epidermal Growth Factor Receptor Targeted Affibody Probes. BioMed Research International, 2013, 2013, 1-11.	1.9	21
22	The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6662-6667.	7.1	1,255
23	Assessment and comparison of magnetic nanoparticles as MRI contrast agents in a rodent model of human hepatocellular carcinoma. Contrast Media and Molecular Imaging, 2012, 7, 363-372.	0.8	44
24	Suppression of Glypican 3 Inhibits Growth of Hepatocellular Carcinoma Cells through Up-Regulation of TGF-β2. Neoplasia, 2011, 13, 735-IN25.	5.3	82
25	Soluble Frizzled-7 receptor inhibits Wnt signaling and sensitizes hepatocellular carcinoma cells towards doxorubicin. Molecular Cancer, 2011, 10, 16.	19.2	82
26	<i>In vivo</i> MRSI of hyperpolarized [1â€ ¹³ C]pyruvate metabolism in rat hepatocellular carcinoma. NMR in Biomedicine, 2011, 24, 506-513.	2.8	54
27	Comparative Profiling of Primary Colorectal Carcinomas and Liver Metastases Identifies LEF1 as a Prognostic Biomarker. PLoS ONE, 2011, 6, e16636.	2.5	56
28	Small molecule antagonists of Tcf4/βâ€catenin complex inhibit the growth of HCC cells <i>in vitro</i> and <i>in vivo</i> . International Journal of Cancer, 2010, 126, 2426-2436.	5.1	113
29	Blockade of Wnt-1 signaling leads to anti-tumor effects in hepatocellular carcinoma cells. Molecular Cancer, 2009, 8, 76.	19.2	87
30	Small interfering RNA targeting CDC25B inhibits liver tumor growth in vitro and in vivo. Molecular Cancer, 2008, 7, 19.	19.2	25
31	N-Myc down-regulated gene 1 mediates proliferation, invasion, and apoptosis of hepatocellular carcinoma cells. Cancer Letters, 2008, 262, 133-142.	7.2	51
32	Overexpression of NDRG1 is an indicator of poor prognosis in hepatocellular carcinoma. Modern Pathology, 2007, 20, 76-83.	5.5	108
33	Sprouty and cancer: The first terms report. Cancer Letters, 2006, 242, 141-150.	7.2	81
34	Sprouty 2, an Inhibitor of Mitogen-Activated Protein Kinase Signaling, Is Down-Regulated in Hepatocellular Carcinoma. Cancer Research, 2006, 66, 2048-2058.	0.9	146
35	Gallium maltolate is a promising chemotherapeutic agent for the treatment of hepatocellular carcinoma. Anticancer Research, 2006, 26, 1739-43.	1.1	47
36	An integrated data analysis approach to characterize genes highly expressed in hepatocellular carcinoma. Oncogene, 2005, 24, 3737-3747.	5.9	122

Mei-Sze Chua

#	Article	IF	CITATIONS
37	Microarrays: new tools for transplantation research. Pediatric Nephrology, 2003, 18, 319-327.	1.7	20
38	Molecular Profiling of Anemia in Acute Renal Allograft Rejection Using DNA Microarrays. American Journal of Transplantation, 2003, 3, 17-22.	4.7	42
39	Increased expression of cytotoxic effector molecules: Different interpretations for steroid-based and steroid-free immunosuppression. Pediatric Transplantation, 2003, 7, 53-58.	1.0	37
40	Molecular Heterogeneity in Acute Renal Allograft Rejection Identified by DNA Microarray Profiling. New England Journal of Medicine, 2003, 349, 125-138.	27.0	673
41	Applications of microarrays to renal transplantation progress and possibilities. Frontiers in Bioscience - Landmark, 2003, 8, s913-923.	3.0	9
42	Antitumour Benzothiazoles. Part 15: The Synthesis and Physico-Chemical Properties of 2-(4-Aminophenyl)benzothiazole Sulfamate Salt Derivatives. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1093-1095.	2.2	32
43	Antitumor Benzothiazoles. 14.1Synthesis and in Vitro Biological Properties of Fluorinated 2-(4-Aminophenyl)benzothiazoles. Journal of Medicinal Chemistry, 2001, 44, 1446-1455.	6.4	332
44	Antitumor Benzothiazoles. 8.1Synthesis, Metabolic Formation, and Biological Properties of theC- andN-Oxidation Products of Antitumor 2-(4-Aminophenyl)benzothiazolesâ^‡. Journal of Medicinal Chemistry, 1999, 42, 4172-4184.	6.4	225
45	Antitumor Benzothiazoles. 7. Synthesis of 2-(4-Acylaminophenyl)benzothiazoles and Investigations into the Role of Acetylation in the Antitumor Activities of the Parent Amines. Journal of Medicinal Chemistry, 1999, 42, 381-392.	6.4	113
46	Exploiting DNA Microarrays in Renal Transplantation. Graft: Organ and Cell Transplantation, 0, 5, 223-231.	0.0	2