Hideo Imamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3967107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptional Shift and Metabolic Adaptations during Leishmania Quiescence Using Stationary Phase and Drug Pressure as Models. Microorganisms, 2022, 10, 97.	3.6	7
2	Genomic and Phenotypic Characterization of Experimentally Selected Resistant Leishmania donovani Reveals a Role for Dynamin-1-Like Protein in the Mechanism of Resistance to a Novel Antileishmanial Compound. MBio, 2022, 13, e0326421.	4.1	5
3	High throughput single-cell genome sequencing gives insights into the generation and evolution of mosaic aneuploidy in <i>Leishmania donovani</i> . Nucleic Acids Research, 2022, 50, 293-305.	14.5	14
4	Ecological divergence and hybridization of Neotropical <i>Leishmania</i> parasites. Proceedings of the United States of America, 2020, 117, 25159-25168.	7.1	60
5	Evaluation of whole genome amplification and bioinformatic methods for the characterization of Leishmania genomes at a single cell level. Scientific Reports, 2020, 10, 15043.	3.3	20
6	Global genome diversity of the Leishmania donovani complex. ELife, 2020, 9, .	6.0	90
7	Major changes in chromosomal somy, gene expression and gene dosage driven by SbIII in Leishmania braziliensis and Leishmania panamensis. Scientific Reports, 2019, 9, 9485.	3.3	42
8	Meiotic sex in Chagas disease parasite Trypanosoma cruzi. Nature Communications, 2019, 10, 3972.	12.8	58
9	Refining wet lab experiments with in silico searches: A rational quest for diagnostic peptides in visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2019, 13, e0007353.	3.0	16
10	A Guide to Next Generation Sequence Analysis of Leishmania Genomes. Methods in Molecular Biology, 2019, 1971, 69-94.	0.9	7
11	Tracking of quiescence in Leishmania by quantifying the expression of GFP in the ribosomal DNA locus. Scientific Reports, 2019, 9, 18951.	3.3	25
12	Genomes of Leishmania parasites directly sequenced from patients with visceral leishmaniasis in the Indian subcontinent. PLoS Neglected Tropical Diseases, 2019, 13, e0007900.	3.0	48
13	Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 246-264.	3.4	49
14	Integrated genomic and metabolomic profiling of ISC1, an emerging Leishmania donovani population in the Indian subcontinent. Infection, Genetics and Evolution, 2018, 62, 170-178.	2.3	32
15	Genomic Analysis of Colombian Leishmania panamensis strains with different level of virulence. Scientific Reports, 2018, 8, 17336.	3.3	25
16	Genomic insights into virulence mechanisms of Leishmania donovani: evidence from an atypical strain. BMC Genomics, 2018, 19, 843.	2.8	33
17	Multiplexed Spliced-Leader Sequencing: A high-throughput, selective method for RNA-seq in Trypanosomatids. Scientific Reports, 2017, 7, 3725.	3.3	24
18	Genomic analysis of Isometamidium Chloride resistance in Trypanosoma congolense. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 350-361.	3.4	48

HIDEO IMAMURA

#	Article	IF	CITATIONS
19	Discovery and genomic analyses of hybridization between divergent lineages of <i>Trypanosoma congolense</i> , causative agent of Animal African Trypanosomiasis. Molecular Ecology, 2017, 26, 6524-6538.	3.9	50
20	Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nature Ecology and Evolution, 2017, 1, 1961-1969.	7.8	95
21	Evidence for viable and stable triploid Trypanosoma congolense parasites. Parasites and Vectors, 2017, 10, 468.	2.5	10
22	Single locus genotyping to track Leishmania donovani in the Indian subcontinent: Application in Nepal. PLoS Neglected Tropical Diseases, 2017, 11, e0005420.	3.0	19
23	Species- and Strain-Specific Adaptation of the HSP70 Super Family in Pathogenic Trypanosomatids. Genome Biology and Evolution, 2016, 8, 1980-1995.	2.5	20
24	<i>In vitro</i> selection of miltefosine resistance in promastigotes of <i>Leishmania donovani</i> from Nepal: genomic and metabolomic characterization. Molecular Microbiology, 2016, 99, 1134-1148.	2.5	67
25	Apolipoprotein L1 Variant Associated with Increased Susceptibility to Trypanosome Infection. MBio, 2016, 7, e02198-15.	4.1	18
26	Genomic and Molecular Characterization of Miltefosine Resistance in Leishmania infantum Strains with Either Natural or Acquired Resistance through Experimental Selection of Intracellular Amastigotes. PLoS ONE, 2016, 11, e0154101.	2.5	80
27	Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. ELife, 2016, 5, .	6.0	147
28	Genome and Phylogenetic Analyses of Trypanosoma evansi Reveal Extensive Similarity to T. brucei and Multiple Independent Origins for Dyskinetoplasty. PLoS Neglected Tropical Diseases, 2015, 9, e3404.	3.0	124
29	Genomic Confirmation of Hybridisation and Recent Inbreeding in a Vector-Isolated Leishmania Population. PLoS Genetics, 2014, 10, e1004092.	3.5	142
30	Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. Trends in Parasitology, 2012, 28, 370-376.	3.3	120
31	Genetic Markers for SSG Resistance in Leishmania donovani and SSG Treatment Failure in Visceral Leishmaniasis Patients of the Indian Subcontinent. Journal of Infectious Diseases, 2012, 206, 752-755.	4.0	23
32	Molecular Mechanisms of Drug Resistance in Natural Leishmania Populations Vary with Genetic Background. PLoS Neglected Tropical Diseases, 2012, 6, e1514.	3.0	79
33	Genome-wide SNP and microsatellite variation illuminate population-level epidemiology in the Leishmania donovani species complex. Infection, Genetics and Evolution, 2012, 12, 149-159.	2.3	50
34	Whole genome sequencing of multiple <i>Leishmania donovani</i> clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Research, 2011, 21, 2143-2156.	5.5	381
35	Chromosome and gene copy number variation allow major structural change between species and strains of <i>Leishmania</i> . Genome Research, 2011, 21, 2129-2142.	5.5	380
36	The effect of Plasmodium falciparum Sir2a histone deacetylase on clonal and longitudinal variation in expression of the var family of virulence genes. International Journal for Parasitology, 2010, 40, 35-43.	3.1	24

HIDEO IMAMURA

#	Article	IF	CITATIONS
37	Weak preservation of local neutral substitution rates across mammalian genomes. BMC Evolutionary Biology, 2009, 9, 89.	3.2	8
38	Minimum model for the α-helix-β-hairpin transition in proteins. Proteins: Structure, Function and Bioinformatics, 2007, 67, 459-468.	2.6	4
39	Sequences conserved by selection across mouse and human malaria species. BMC Genomics, 2007, 8, 372.	2.8	9
40	Dependence of folding dynamics and structural stability on the location of a hydrophobic pair in β-hairpins. Proteins: Structure, Function and Bioinformatics, 2006, 63, 555-570.	2.6	21
41	Self-Assembly of the Ionic Peptide EAK16: The Effect of Charge Distributions on Self-Assembly. Biophysical Journal, 2004, 87, 1249-1259.	0.5	103
42	Conformational conversion of proteins due to mutation. Europhysics Letters, 2004, 67, 491-497.	2.0	6
43	Universal model for α-helix and β-sheet structures in protein. Physica A: Statistical Mechanics and Its Applications, 2003, 321, 181-188.	2.6	13