Karin Wuertz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3966774/publications.pdf Version: 2024-02-01

117625 149698 3,840 82 34 56 h-index citations g-index papers 87 87 87 3919 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inflammatory and catabolic signalling in intervertebral discs: The roles of NF-ï«B and MAP Kinases. , 2012, 23, 102-120.		181
2	Inflammatory Mediators in Intervertebral Disk Degeneration and Discogenic Pain. Global Spine Journal, 2013, 3, 175-184.	2.3	164
3	Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration. European Spine Journal, 2009, 18, 1573-1586.	2.2	158
4	Behavior of Mesenchymal Stem Cells in the Chemical Microenvironment of the Intervertebral Disc. Spine, 2008, 33, 1843-1849.	2.0	145
5	Stability of (â^')-epigallocatechin gallate and its activity in liquid formulations and delivery systems. Journal of Nutritional Biochemistry, 2016, 37, 1-12.	4.2	140
6	In vivo remodeling of intervertebral discs in response to short―and longâ€ŧerm dynamic compression. Journal of Orthopaedic Research, 2009, 27, 1235-1242.	2.3	138
7	MicroRNAs in Intervertebral Disc Degeneration, Apoptosis, Inflammation, and Mechanobiology. International Journal of Molecular Sciences, 2020, 21, 3601.	4.1	137
8	Influence of extracellular osmolarity and mechanical stimulation on gene expression of intervertebral disc cells. Journal of Orthopaedic Research, 2007, 25, 1513-1522.	2.3	132
9	Advances in the Biofabrication of 3D Skin in vitro: Healthy and Pathological Models. Frontiers in Bioengineering and Biotechnology, 2018, 6, 154.	4.1	121
10	Age-Related Variation in Cell Density of Human Lumbar Intervertebral Disc. Spine, 2011, 36, 153-159.	2.0	117
11	Immunohistochemical identification of notochordal markers in cells in the aging human lumbar intervertebral disc. European Spine Journal, 2010, 19, 1761-1770.	2.2	101
12	Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure. European Spine Journal, 2006, 15, 372-378.	2.2	100
13	MSC response to pH levels found in degenerating intervertebral discs. Biochemical and Biophysical Research Communications, 2009, 379, 824-829.	2.1	98
14	Regenerative Therapies for Equine Degenerative Joint Disease: A Preliminary Study. PLoS ONE, 2014, 9, e85917.	2.5	94
15	The Red Wine Polyphenol Resveratrol Shows Promising Potential for the Treatment of Nucleus Pulposus–Mediated Pain In Vitro and In Vivo. Spine, 2011, 36, E1373-E1384.	2.0	81
16	Hyaluronic acid fragments enhance the inflammatory and catabolic response in human intervertebral disc cells through modulation of toll-like receptor 2 signalling pathways. Arthritis Research and Therapy, 2013, 15, R94.	3.5	81
17	Antimicrobial activity of Lactobacillus salivarius and Lactobacillus fermentum against Staphylococcus aureus. Pathogens and Disease, 2017, 75, .	2.0	76
18	Controversies in regenerative medicine: Should intervertebral disc degeneration be treated with mesenchymal stem cells?. JOR Spine, 2019, 2, e1043.	3.2	74

#	Article	IF	CITATIONS
19	A three-dimensional collagen matrix as a suitable culture system for the comparison of cyclic strain and hydrostatic pressure effects on intervertebral disc cells. Journal of Neurosurgery: Spine, 2005, 2, 457-465.	1.7	73
20	Expression and regulation of toll-like receptors (TLRs) in human intervertebral disc cells. European Spine Journal, 2014, 23, 1878-1891.	2.2	73
21	Histological analysis of surgical lumbar intervertebral disc tissue provides evidence for an association between disc degeneration and increased body mass index. BMC Research Notes, 2011, 4, 497.	1.4	62
22	Detrimental Role for Human High Temperature Requirement Serine Protease A1 (HTRA1) in the Pathogenesis of Intervertebral Disc (IVD) Degeneration. Journal of Biological Chemistry, 2012, 287, 21335-21345.	3.4	57
23	Age-related changes in human cervical, thoracal and lumbar intervertebral disc exhibit a strong intra-individual correlation. European Spine Journal, 2012, 21, 810-818.	2.2	56
24	Epigallocatechin 3-gallate suppresses interleukin-1β-induced inflammatory responses in intervertebral disc cells in vitro and reduces radiculopathic pain in rats. , 2014, 28, 372-386.		55
25	Curcuma DMSO extracts and curcumin exhibit an anti-inflammatory and anti-catabolic effect on human intervertebral disc cells, possibly by influencing TLR2 expression and JNK activity. Journal of Inflammation, 2012, 9, 29.	3.4	53
26	Allogenic Mesenchymal Stem Cells as a Treatment for Equine Degenerative Joint Disease: A Pilot Study. Current Stem Cell Research and Therapy, 2014, 9, 497-503.	1.3	53
27	Biological Response of the Intervertebral Disc to Repetitive Short-Term Cyclic Torsion. Spine, 2011, 36, 2021-2030.	2.0	50
28	The Natural Polyphenol Epigallocatechin Gallate Protects Intervertebral Disc Cells from Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-17.	4.0	49
29	Peroxynitrite Induces Gene Expression in Intervertebral Disc Cells. Spine, 2009, 34, 1127-1133.	2.0	46
30	Activation of intervertebral disc cells by co-culture with notochordal cells, conditioned medium and hypoxia. BMC Musculoskeletal Disorders, 2014, 15, 422.	1.9	46
31	Inflammaging in cervical and lumbar degenerated intervertebral discs: analysis of proinflammatory cytokine and TRP channel expression. European Spine Journal, 2018, 27, 564-577.	2.2	46
32	pH-Responsive Electrospun Nanofibers and Their Applications. Polymer Reviews, 2022, 62, 351-399.	10.9	44
33	Triptolide exhibits anti-inflammatory, anti-catabolic as well as anabolic effects and suppresses TLR expression and MAPK activity in IL-11² treated human intervertebral disc cells. European Spine Journal, 2012, 21, 850-859.	2.2	43
34	Cell-Laden Agarose-Collagen Composite Hydrogels for Mechanotransduction Studies. Frontiers in Bioengineering and Biotechnology, 2020, 8, 346.	4.1	41
35	Stress and Alterations in Bones: An Interdisciplinary Perspective. Frontiers in Endocrinology, 2017, 8, 96.	3.5	38
36	Uncovering the secretome of mesenchymal stromal cells exposed to healthy, traumatic, and degenerative intervertebral discs: a proteomic analysis. Stem Cell Research and Therapy, 2021, 12, 11.	5.5	38

#	Article	lF	CITATIONS
37	p38 MAPK Facilitates Crosstalk Between Endoplasmic Reticulum Stress and IL-6 Release in the Intervertebral Disc. Frontiers in Immunology, 2018, 9, 1706.	4.8	37
38	Bupivacaine—the deadly friend of intervertebral disc cells?. Spine Journal, 2011, 11, 46-53.	1.3	35
39	Inflammatory Processes Associated with Canine Intervertebral Disc Herniation. Frontiers in Immunology, 2017, 8, 1681.	4.8	35
40	Therapeutic Potential of Extracellular Vesicles in Degenerative Diseases of the Intervertebral Disc. Frontiers in Bioengineering and Biotechnology, 2020, 8, 311.	4.1	34
41	Region-Dependent Aggrecan Degradation Patterns in the Rat Intervertebral Disc Are Affected by Mechanical Loading In Vivo. Spine, 2011, 36, 203-209.	2.0	33
42	Mechanical and Biological Characterization of 3D Printed Lattices. 3D Printing and Additive Manufacturing, 2019, 6, 73-81.	2.9	33
43	Osmosensing, osmosignalling and inflammation: how intervertebral disc cells respond to altered osmolarity. , 2018, 36, 231-250.		30
44	The role of transient receptor potential channels in joint diseases. , 2017, 34, 180-201.		30
45	Transient receptor potential vanilloid 2â€mediated shearâ€stress responses in C2C12 myoblasts are regulated by serum and extracellular matrix. FASEB Journal, 2015, 29, 4726-4737.	0.5	28
46	pH-Responsive Chitosan/Alginate Polyelectrolyte Complexes on Electrospun PLGA Nanofibers for Controlled Drug Release. Nanomaterials, 2021, 11, 1850.	4.1	28
47	Mechanical Stimulation Alters Pleiotrophin and Aggrecan Expression by Human Intervertebral Disc Cells and Influences Their Capacity to Stimulate Endothelial Cell Migration. Spine, 2009, 34, 663-669.	2.0	27
48	Expression and Activity of TRPA1 and TRPV1 in the Intervertebral Disc: Association with Inflammation and Matrix Remodeling. International Journal of Molecular Sciences, 2019, 20, 1767.	4.1	27
49	Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. International Journal of Molecular Sciences, 2021, 22, 703.	4.1	27
50	The potential of CRISPR/Cas9 genome editing for the study and treatment of intervertebral disc pathologies. JOR Spine, 2018, 1, e1003.	3.2	26
51	An Inflammatory Nucleus Pulposus Tissue Culture Model to Test Molecular Regenerative Therapies: Validation with Epigallocatechin 3-Gallate. International Journal of Molecular Sciences, 2016, 17, 1640.	4.1	23
52	Electrospinning and <scp>3D</scp> bioprinting for intervertebral disc tissue engineering. JOR Spine, 2020, 3, e1117.	3.2	23
53	Decellularized matrix as a building block in bioprinting and electrospinning. Current Opinion in Biomedical Engineering, 2019, 10, 116-122.	3.4	21
54	Magnetic fields modulate metabolism and gut microbiome in correlation with <i>Pgcâ€1α</i> expression: Followâ€up to an in vitro magnetic mitohormetic study. FASEB Journal, 2020, 34, 11143-11167.	0.5	20

#	Article	IF	CITATIONS
55	TRPV4 Inhibition and CRISPR-Cas9 Knockout Reduce Inflammation Induced by Hyperphysiological Stretching in Human Annulus Fibrosus Cells. Cells, 2020, 9, 1736.	4.1	20
56	Immuno-Modulatory Effects of Intervertebral Disc Cells. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	20
57	The Role of Cutibacterium acnes in Intervertebral Disc Inflammation. Biomedicines, 2020, 8, 186.	3.2	18
58	Chondrogenic Priming at Reduced Cell Density Enhances Cartilage Adhesion of Equine Allogeneic MSCs - a Loading Sensitive Phenomenon in an Organ Culture Study with 180 Explants. Cellular Physiology and Biochemistry, 2015, 37, 651-665.	1.6	17
59	Hyaluronan supplementation as a mechanical regulator of cartilage tissue development under joint-kinematic-mimicking loading. Journal of the Royal Society Interface, 2017, 14, 20170255.	3.4	14
60	Electrospray-Based Microencapsulation of Epigallocatechin 3-Gallate for Local Delivery into the Intervertebral Disc. Pharmaceutics, 2019, 11, 435.	4.5	13
61	TRPC6 in simulated microgravity of intervertebral disc cells. European Spine Journal, 2018, 27, 2621-2630.	2.2	12
62	Development of a Novel Automated Cell Isolation, Expansion, and Characterization Platform. Journal of the Association for Laboratory Automation, 2011, 16, 204-213.	2.8	11
63	Clinical and Radiographic Outcome of Patients With Cervical Spondylotic Myelopathy Undergoing Total Disc Replacement. Spine, 2019, 44, 1403-1411.	2.0	11
64	Expression and activity of hyaluronidases HYAL-1, HYAL-2 and HYAL-3 in the human intervertebral disc. European Spine Journal, 2020, 29, 605-615.	2.2	11
65	Human MMP28 expression is unresponsive to inflammatory stimuli and does not correlate to the grade of intervertebral disc degeneration. Journal of Negative Results in BioMedicine, 2011, 10, 9.	1.4	10
66	Inflammaging in the intervertebral disc. Clinical and Translational Neuroscience, 2018, 2, 2514183X1876114.	0.9	9
67	The Pathobiology of the Meniscus: A Comparison Between the Human and Dog. Frontiers in Veterinary Science, 2018, 5, 73.	2.2	9
68	Clinical and Radiological Outcome of a New Total Cervical Disc Replacement Design. Spine, 2019, 44, E202-E210.	2.0	8
69	Implant Design and the Anchoring Mechanism Influence the Incidence of Heterotopic Ossification in Cervical Total Disc Replacement at 2-year Follow-up. Spine, 2019, 44, 1471-1480.	2.0	8
70	Effects of Early Life Stress on Bone Homeostasis in Mice and Humans. International Journal of Molecular Sciences, 2020, 21, 6634.	4.1	8
71	Hypo-Osmotic Loading Induces Expression of IL-6 in Nucleus Pulposus Cells of the Intervertebral Disc Independent of TRPV4 and TRPM7. Frontiers in Pharmacology, 2020, 11, 952.	3.5	8
72	Engineering Advanced In Vitro Models of Systemic Sclerosis for Drug Discovery and Development. Advanced Biology, 2021, 5, e2000168.	2.5	8

#	Article	IF	CITATIONS
73	<scp>TRPV4</scp> mediates cell damage induced by hyperphysiological compression and regulates <scp>COX2</scp> / <scp>PGE2</scp> in intervertebral discs. JOR Spine, 2021, 4, e1149.	3.2	8
74	Fibronectin Fragments and Inflammation During Canine Intervertebral Disc Disease. Frontiers in Veterinary Science, 2020, 7, 547644.	2.2	8
75	Extracellular Vesicles: Potential Mediators of Psychosocial Stress Contribution to Osteoporosis?. International Journal of Molecular Sciences, 2021, 22, 5846.	4.1	6
76	Alterations in Bone Homeostasis and Microstructure Related to Depression and Allostatic Load. Psychotherapy and Psychosomatics, 2019, 88, 383-385.	8.8	5
77	Hypotonicity differentially affects inflammatory marker production by nucleus pulposus tissue in simulated disc degeneration versus herniation. Journal of Orthopaedic Research, 2019, 37, 1110-1116.	2.3	4
78	Sexual and urinary function following anterior lumbar surgery in females. Neurourology and Urodynamics, 2019, 38, 632-636.	1.5	4
79	Sulfated Hydrogels in Intervertebral Disc and Cartilage Research. Cells, 2021, 10, 3568.	4.1	3
80	Resveratrol Microencapsulation into Electrosprayed Polymeric Carriers for the Treatment of Chronic, Non-Healing Wounds. Pharmaceutics, 2022, 14, 853.	4.5	3
81	Acrylonitrile and Pullulan Based Nanofiber Mats as Easily Accessible Scaffolds for 3D Skin Cell Models Containing Primary Cells. Cells, 2022, 11, 445.	4.1	2
82	Effect of BMI on the clinical outcome following microsurgical decompression in over-the-top technique: bi-centric study with an analysis of 744 patients. European Spine Journal, 2021, 30, 936-945.	2.2	1