JÃ;n DuplÃ;k

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3966341/publications.pdf

Version: 2024-02-01

ΙΑΞΝ ΠΠΟΙΑΞΚ

#	Article	IF	CITATIONS
1	Ergonomic Rationalization Sequence of Digital Lighting Design in the Working Environment. International Journal of Environmental Research and Public Health, 2022, 19, 7275.	2.6	3
2	Implementation of Industry 4.0 Using E-learning and M-learning Approaches in Technically-Oriented Education. TEM Journal, 2021, , 368-375.	0.7	10
3	Advanced Configuration Parameters of Post Processor Influencing Tensile Testing PLA and Add-Mixtures in Polymer Matrix in the Process of FDM Technology. Applied Sciences (Switzerland), 2021, 11, 6212.	2.5	3
4	Estimation of Wear Resistance for Multilayer Coatings Obtained by Nitrogenchroming. Metals, 2021, 11, 1153.	2.3	3
5	Prediction of Cutting Material Durability by T = f(vc) Dependence for Turning Processes. Processes, 2020, 8, 789.	2.8	7
6	New Trends of Mineral Composite Application in the Production of CNC Machine Tools. TEM Journal, 2020, , 977-982.	0.7	1
7	Effect of glass and carbon fibres on the compressive and flexural strength of the polymer concrete composite. Advances in Production Engineering and Management, 2020, 15, 441-452.	1.2	0
8	Prediction model of surface roughness parameters of structural steel created by plasma arc cutting via full factor experiment. Materialwissenschaft Und Werkstofftechnik, 2019, 50, 1207-1220.	0.9	7
9	Illumination simulation of working environment during the testing of cutting materials durability. Ain Shams Engineering Journal, 2019, 10, 161-169.	6.1	17
10	Ergonomic rationalization of lighting in the working environment. Part I.: Proposal of rationalization algorithm for lighting redesign. International Journal of Industrial Ergonomics, 2019, 71, 92-102.	2.6	18
11	Influence of Residual Stress Induced in Steel Material on Eddy Currents Response Parameters. Lecture Notes in Mechanical Engineering, 2019, , 551-560.	0.4	5
12	INFLUENCE OF RECYCLED PA6 AND PBT PLASTIC MATERIAL ON THE BONDING STRENGTH. MM Science Journal, 2019, 2019, 2005-3010.	0.4	0
13	Comprehensive analysis and study of the machinability of a high strength aluminum alloy (EN) Tj ETQq1 1 0.784 13, 455-465.	314 rgBT 1.2	Overlock 10 11
14	Determination of Optimal Production Process Using Scheduling and Simulation Software. International Journal of Simulation Modelling, 2018, 17, 609-622.	1.3	21
15	COMPARISON OF PROGRAMMING PRODUCTION OF THIN WALLED PARTS USING DIFFERENT CAM SYSTEMS. MM Science Journal, 2016, 2016, 1056-1059.	0.4	4
16	CUTTING CERAMIC DURABILITY IN MACHINING PROCESS OF BEARINGS STEEL 100CR6. MM Science Journal, 2016, 2016, 1060-1065.	0.4	2
17	PROPOSAL OF MEASURING FIXTURE FOR SERIAL PRODUCTION. MM Science Journal, 2016, 2016, 1082-1085.	0.4	4
18	RESEARCH ON THE DURABILITY OF SELECTED CUTTING MATERIALS IN THE PROCESS OF TURNING CARBON STEEL. MM Science Journal, 2016, 2016, 1086-1089.	0.4	6

JÃin DuplÃik

#	Article	IF	CITATIONS
19	Using Software Zelio Soft in Educational Process to Simulation Control Programs for Intelligent Relays. Technological Engineering, 2016, 13, 28-30.	0.3	2
20	Bearing Rings Turning and the Impact of this Process for Resulting Durability of Selected Cutting Materials Durability. Key Engineering Materials, 2015, 669, 278-285.	0.4	1
21	Study of Surface Roughness of Machined Polymer Composite Material. International Journal of Polymer Science, 2015, 2015, 1-6.	2.7	15
22	Method for Measurement of Residual Stresses using Eddy Currents. Key Engineering Materials, 2015, 669, 409-416.	0.4	2
23	Evaluation of T-V _c Dependence for the most Commonly Used Cutting Tools. Key Engineering Materials, 2015, 669, 311-318.	0.4	1
24	Non-Destructive Testing of Inhomogeneity of Wood Plastic Composite. Applied Mechanics and Materials, 2014, 718, 71-76.	0.2	0
25	The Moisture of Ceramic Powder and the Importance of Monitoring this Parameter during Drying in the Spray Dryer. Applied Mechanics and Materials, 2014, 528, 175-180.	0.2	5
26	Study of Surface Quality after Turning of Steel AISI 304. Manufacturing Technology, 2014, 14, 527-532.	1.4	5
27	Theory and Practice in the Process of <i>Tv</i> _c Dependence Creation for Selected Cutting Material. Advanced Materials Research, 2013, 716, 261-265.	0.3	10
28	Ceramic Powder (Silicon Carbide) - Monitoring and Influencing Process its Production. Advanced Materials Research, 2013, 842, 316-321.	0.3	0
29	Balance Equation - An Essential Element of the Definition of the Drying Process. Advanced Materials Research, 2013, 849, 310-315.	0.3	11
30	Comprehensive Expression of Durability for the Selected Cutting Tools in Comparison with Standard ISO 3685. Advanced Science Letters, 2013, 19, 460-463.	0.2	10
31	Turning Bearing Rings and Determination of Selected Cutting Materials Durability. Advanced Science Letters, 2013, 19, 2486-2489.	0.2	12
32	Analysis of Cutting Tools Durability Compared with Standard ISO 3685. International Journal of Computer Theory and Engineering, 2012, , 621-624.	3.4	20
33	Comprehensive Expression of Durability for the Selected Cutting Tools in Comparison with Standard ISO 3685. Transactions of the VSB: Technical University of Ostrava, 2012, 58, 17-24.	0.1	0
34	Comprehensive Identification of Sintered Carbide Durability in Machining Process of Bearings Steel 100CrMn6. Advanced Materials Research, 0, 340, 30-33.	0.3	28
35	Analytical Expression of <i>T-v</i> _C Dependence in Standard ISO 3685 for Cutting Ceramic. Key Engineering Materials, 0, 480-481, 317-322.	0.4	28
36	Tapered Roller Bearing and Comprehensive Durability Identification of Ceramic Cutting Materials in Machining Process of Steel 80MoCrV4016. Applied Mechanics and Materials, 0, 415, 606-609.	0.2	0

JÃin DuplÃik

#	Article	IF	CITATIONS
37	Detail Study and Analysis of Durability for Selected Cutting Materials According to Taylor's Theory. Key Engineering Materials, 0, 581, 3-8.	0.4	1
38	New Experimental Expression of Durability Dependence for Ceramic Cutting Tool. Applied Mechanics and Materials, 0, 275-277, 2230-2236.	0.2	15
39	Durability Analysis for Selected Cutting Tools in Machining Process of Steel 16MoV6-3. Applied Mechanics and Materials, 0, 308, 133-139.	0.2	6
40	Study of the Surface Material AISI 304 Usable for Actuator after the Process of Turning. Applied Mechanics and Materials, 0, 460, 107-114.	0.2	8
41	The Analysis of Ceramic Cutting Tools Durability in Machining Process of Steel C60 Applied According to Standard ISO 3685. Applied Mechanics and Materials, 0, 275-277, 2190-2194.	0.2	1
42	Comprehensive Identification of Durability for Selected Cutting Tool Applied on the Base of Taylor Dependence. Advanced Materials Research, 0, 716, 254-260.	0.3	10
43	Roller Bearings and Analytical Expression of Selected Cutting Tools Durability in Machining Process of Steel 80MoCrV4016. Applied Mechanics and Materials, 0, 415, 610-613.	0.2	16
44	The Comparison of Durability Ceramic Cutting Tools in Turning Process of Steel 80MoCrV4016. Applied Mechanics and Materials, 0, 718, 110-115.	0.2	0
45	The Comprehensive Comparison of the Selected Cutting Materials with Standard ISO 3685 in Machining Process of Steel C60. Applied Mechanics and Materials, 0, 718, 93-98.	0.2	3
46	Impact of Cutting Speed on the Resultant Cutting Tools Durability in Turning Process of Steel 100CrMn6. Applied Mechanics and Materials, 0, 616, 292-299.	0.2	1
47	Comparison of Theory and Practice in Analytical Expression of Cutting Tools Durability for Potential Use at Manufacturing of Bearings. Applied Mechanics and Materials, 0, 616, 300-307.	0.2	12
48	Analysis of Selected Properties of Cutting Ceramics at Machining Process of Bearing Steel 100Cr6. Applied Mechanics and Materials, 0, 616, 308-316.	0.2	1
49	Creation of Mathematical Prescription of Residual Stress Depending on Various Cutting Conditions. Key Engineering Materials, 0, 669, 126-133.	0.4	2
50	Impact of Cutting Speed on the Resultant Durability of Cutting Tool in Machining Process of Steel C45. Key Engineering Materials, 0, 669, 294-301.	0.4	0
51	Study of Welding Parameters Effect on the Weld Quality for Structural Steel S235 JO. Key Engineering Materials, 0, 669, 79-86.	0.4	1
52	Comprehensive Durability Identification of Ceramic Cutting Materials in Machining Process of Steel 80MoCrV4016. Key Engineering Materials, 0, 669, 286-293.	0.4	1
53	Analysis of Cutting Tools Durability Importance in Turning Process of Steel C60. Key Engineering Materials, 0, 669, 319-326.	0.4	3
54	Machinability Research by New Abrasion-Resistant Cast Irons Cutting. Key Engineering Materials, 0, 669, 118-125.	0.4	3