
Paula M.T. Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3965892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning the drug multimodal release through a co-assembly strategy based on magnetic gels. Nanoscale, 2022, 14, 5488-5500.	5.6	9
2	An injectable, naproxen-conjugated, supramolecular hydrogel with ultra-low critical gelation concentration—prepared from a known folate receptor ligand. Soft Matter, 2022, 18, 3955-3966.	2.7	8
3	Dehydropeptide Supramolecular Hydrogels and Nanostructures as Potential Peptidomimetic Biomedical Materials. International Journal of Molecular Sciences, 2021, 22, 2528.	4.1	13
4	Supramolecular ultra-short carboxybenzyl-protected dehydropeptide-based hydrogels for drug delivery. Materials Science and Engineering C, 2021, 122, 111869.	7.3	21
5	Evaluation of a Model Photo-Caged Dehydropeptide as a Stimuli-Responsive Supramolecular Hydrogel. Nanomaterials, 2021, 11, 704.	4.1	13
6	Bolaamphiphilic Bis-Dehydropeptide Hydrogels as Potential Drug Release Systems. Gels, 2021, 7, 52.	4.5	7
7	Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release. Nanomaterials, 2021, 11, 16.	4.1	18
8	Dehydropeptide-based plasmonic magnetogels: a supramolecular composite nanosystem for multimodal cancer therapy. Journal of Materials Chemistry B, 2020, 8, 45-64.	5.8	27
9	Exploring the properties and potential biomedical applications of NSAID-capped peptide hydrogels. Soft Matter, 2020, 16, 10001-10012.	2.7	12
10	Magnetoliposomes Incorporated in Peptide-Based Hydrogels: Towards Development of Magnetolipogels. Nanomaterials, 2020, 10, 1702.	4.1	10
11	Biological Evaluation of Naproxen–Dehydrodipeptide Conjugates with Self-Hydrogelation Capacity as Dual LOX/COX Inhibitors. Pharmaceutics, 2020, 12, 122.	4.5	16
12	Synthesis and Characterisation of Dimeric Bolaamphiphilic Dehydrodipeptides for Biomedical Applications. Materials Proceedings, 2020, 4, .	0.2	0
13	Delivery of Linear Gene-Editing Systems by Cell-Penetrating Magnetite Vehicles: Synthesis, Characterization and Preliminary In Vitro Testing. Materials Proceedings, 2020, 4, .	0.2	0
14	Novel dehydropeptide-based magnetogels containing manganese ferrite nanoparticles as antitumor drug nanocarriers. Physical Chemistry Chemical Physics, 2019, 21, 10377-10390.	2.8	17
15	Magnetic Dehydrodipeptide-Based Self-Assembled Hydrogels for Theragnostic Applications. Nanomaterials, 2019, 9, 541.	4.1	41
16	Toxicity and structure-activity relationship (SAR) of α,β-dehydroamino acids against human cancer cell lines. Toxicology in Vitro, 2018, 47, 26-37.	2.4	10
17	Magnetogels: Prospects and Main Challenges in Biomedical Applications. Pharmaceutics, 2018, 10, 145.	4.5	28
18	Self-assembled RGD dehydropeptide hydrogels for drug delivery applications. Journal of Materials Chemistry B, 2017, 5, 8607-8617.	5.8	35

PAULA M.T. FERREIRA

#	Article	IF	CITATIONS
19	Synthesis and preliminary biological evaluation of new phenolic and catecholic dehydroamino acid derivatives. Tetrahedron, 2017, 73, 6199-6209.	1.9	6
20	Interaction of fluorescent quinolin-2-one and coumarin derivatives including dipeptides with lipid bilayers. RSC Advances, 2016, 6, 72141-72148.	3.6	6
21	PEGylated DOTAâ€AHAâ€Based Gd ^{III} Chelates: A Relaxometric Study. European Journal of Inorganic Chemistry, 2015, 2015, 4798-4809.	2.0	5
22	Gold nanoparticles functionalised with fast water exchanging Gd ³⁺ chelates: linker effects on the relaxivity. Dalton Transactions, 2015, 44, 4016-4031.	3.3	19
23	Dinuclear DOTAâ€Based Gd ^{III} Chelates – Revisiting a Straightforward Strategy for Relaxivity Improvement. European Journal of Inorganic Chemistry, 2015, 2015, 1579-1591.	2.0	12
24	New self-assembled supramolecular hydrogels based on dehydropeptides. Journal of Materials Chemistry B, 2015, 3, 6355-6367.	5.8	30
25	Dehydrodipeptide Hydrogelators Containing Naproxen N-Capped Tryptophan: Self-Assembly, Hydrogel Characterization, and Evaluation as Potential Drug Nanocarriers. Biomacromolecules, 2015, 16, 3562-3573.	5.4	38
26	Ga[NO2A-N-(α-amino)propionate] chelates: synthesis and evaluation as potential tracers for ⁶⁸ Ga PET. Dalton Transactions, 2014, 43, 8037-8047.	3.3	7
27	Ln[DO3A-N-α-(pyrenebutanamido)propionate] complexes: optimized relaxivity and NIR optical properties. Dalton Transactions, 2014, 43, 3162-3173.	3.3	14
28	New cyclic RGD peptides: synthesis, characterization, and theoretical activity towards αvβ3 integrin. Tetrahedron, 2014, 70, 5420-5427.	1.9	11
29	Thermodynamic stability and relaxation studies of small, triaza-macrocyclic Mn(ii) chelates. Dalton Transactions, 2013, 42, 4522.	3.3	31
30	Synthesis of new β-amidodehydroaminobutyric acid derivatives and of new tyrosine derivatives using copper catalyzed C–N and C–O coupling reactions. Amino Acids, 2013, 44, 335-344.	2.7	5
31	Synthesis of Fluorescent Alanines by a Rhodium atalysed Conjugate Addition of Arylboronic Acids to Dehydroalanine Derivatives. European Journal of Organic Chemistry, 2013, 2013, 550-556.	2.4	9
32	Amide conjugates of the DO3Aâ€ <i>N</i> â€(<i>α</i> â€amino)propionate ligand: leads for stable, high relaxivity contrast agents for MRI?. Contrast Media and Molecular Imaging, 2013, 8, 40-49.	0.8	9
33	Synthesis and photophysical studies of new pyrenylamino acids. Tetrahedron, 2013, 69, 10254-10261.	1.9	2
34	Interaction of antitumoral fluorescent heteroaromatic compounds, a benzothienopyrrole and two thienoindoles, with DNA and lipid membranes. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 240, 14-25.	3.9	5
35	Gold nanoparticles functionalised with stable, fast water exchanging Gd3+ chelates as high relaxivity contrast agents for MRI. Dalton Transactions, 2012, 41, 5472.	3.3	58
36	Synthesis of 2,6â€Bis(oxazolyl)pyridine Ligands for Luminescent Ln ^{III} Complexes. European Journal of Organic Chemistry, 2012, 2012, 3905-3910.	2.4	4

Paula M.T. Ferreira

#	Article	IF	CITATIONS
37	Nanoliposomes for encapsulation and delivery of the potential antitumoral methyl 6-methoxy-3-(4-methoxyphenyl)-1H-indole-2-carboxylate. Nanoscale Research Letters, 2011, 6, 482.	5.7	50
38	Phenanthrenyl-indole as a fluorescent probe for peptides and lipid membranes. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 47-57.	3.9	7
39	Electrochemical reduction of dehydroamino acids: synthesis and photophysical properties of β,β-diarylalanines. Tetrahedron, 2011, 67, 193-200.	1.9	7
40	A mild high yielding synthesis of oxazole-4-carboxylate derivatives. Tetrahedron, 2010, 66, 8672-8680.	1.9	31
41	Synthesis and electrochemical behaviour of β-halodehydroamino acid derivatives. Amino Acids, 2010, 39, 499-513.	2.7	18
42	Synthesis and Photophysical Studies of New Fluorescent Indole Derivatives Obtained from βâ€Bromodehydroamino Acids – Interaction with Fluoride Anions. European Journal of Organic Chemistry, 2010, 2010, 464-475.	2.4	13
43	Gallium labeled NOTA-based conjugates for peptide receptor-mediated medical imaging. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7345-7348.	2.2	28
44	Synthesis and Photophysical Studies of a Pyrenylindole and a Phenalenoindole Obtained from Dehydroamino Acid Derivatives – Application as Fluorescent Probes for Biological Systems. European Journal of Organic Chemistry, 2009, 2009, 3906-3916.	2.4	11
45	Synthesis of bis-amino acid derivatives by Suzuki cross-coupling, Michael addition and substitution reactions. Amino Acids, 2009, 36, 429-436.	2.7	4
46	Fluorescence Studies on Potential Antitumoral Heteroaryl and Heteroannulated Indoles in Solution and in Lipid Membranes. Journal of Fluorescence, 2009, 19, 501-509.	2.5	8
47	Fluorescence properties of a potential antitumoral benzothieno[3,2-b]pyrrole in solution and lipid membranes. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 206, 220-226.	3.9	6
48	Gd(DO3A-N-α-aminopropionate): a versatile and easily available synthon with optimized water exchange for the synthesis of high relaxivity, targeted MRI contrast agents. Chemical Communications, 2009, , 6475.	4.1	37
49	Comparative effect of <i>N</i> -substituted dehydroamino acids and α-tocopherol on rat liver lipid peroxidation activities. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 967-971.	5.2	9
50	Synthesis of Substituted Oxazoles from <i>N</i> â€Acylâ€Î²â€hydroxyamino Acid Derivatives. European Journal of Organic Chemistry, 2008, 2008, 4676-4683.	2.4	36
51	Pyrenylamino Acids: Synthesis, Photophysical and Electrochemical Studies. European Journal of Organic Chemistry, 2008, 2008, 5697-5703.	2.4	14
52	Synthesis of new heteroaryl and heteroannulated indoles from dehydrophenylalanines: Antitumor evaluation. Bioorganic and Medicinal Chemistry, 2008, 16, 5584-5589.	3.0	59
53	New tetracyclic heteroaromatic compounds based on dehydroamino acids: photophysical and electrochemical studies of interaction with DNA. Tetrahedron, 2008, 64, 382-391.	1.9	29
54	New strategies for the synthesis of heteroannulated 2-pyridinones, substituted 2-quinolinones and coumarins from dehydroamino acid derivatives. Tetrahedron, 2008, 64, 5139-5146.	1.9	22

PAULA M.T. FERREIRA

#	Article	IF	CITATIONS
55	New synthesis of methyl 5-aryl or heteroaryl pyrrole-2-carboxylates by a tandem Sonogashira coupling/5-endo-dig-cyclization from β-iododehydroamino acid methyl esters and terminal alkynes. Tetrahedron, 2008, 64, 10714-10720.	1.9	25
56	Reactivity of Dehydroamino Acids and Dehydrodipeptides Towards <i>N</i> â€Bromosuccinimide: Synthesis of βâ€Bromo―and β,βâ€Dibromodehydroamino Acid Derivatives and of Substituted 4â€Imidazolidinones. European Journal of Organic Chemistry, 2007, 2007, 5934-5949.	2.4	33
57	Synthesis of new 3-arylindole-2-carboxylates using β,β-diaryldehydroamino acids as building blocks. Fluorescence studies. Tetrahedron, 2007, 63, 2215-2222.	1.9	21
58	Synthesis and Reactivity of β-Bromo-β-Substituted Dehydroalanines. European Journal of Organic Chemistry, 2006, 2006, 3226-3234.	2.4	12
59	New fluorescent benzo[b]thienyl amino acid derivatives based on sulfanylphenyl benzo[b]thiophenes. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 170, 181-188.	3.9	6
60	Synthesis of β-Benzo[b]thienyldehydrophenylalanine Derivatives by One-Pot Palladium-Catalyzed Borylation and Suzuki Coupling (BSC) and Metal-Assisted Intramolecular Cyclization - Studies of Fluorescence and Antimicrobial Activity. European Journal of Organic Chemistry, 2005, 2005, 2951-2957.	2.4	33
61	A Thieno-2H-chromene α-Amino Acid Derivative:  Synthesis and Photochromic Properties. Organic Letters, 2005, 7, 4811-4814.	4.6	26
62	Suzuki Coupling Reactions. , 2005, , 59-90.		1
63	Sonogashira Cross-Couplings of Dehydroamino Acid Derivatives and Phenylacetylenes. European Journal of Organic Chemistry, 2004, 2004, 3985-3991.	2.4	16
64	Synthesis and reactivity of a 1,4-dihydropyrazine derivative. Tetrahedron, 2004, 60, 8489-8496.	1.9	18
65	Synthesis of pure stereoisomers of benzo[b]thienyl dehydrophenylalanines by Suzuki cross-coupling. Preliminary studies of antimicrobial activity. Tetrahedron, 2004, 60, 11821-11828.	1.9	30
66	Newl²,l²-Bis(benzo[b]thienyl)dehydroalanine Derivatives: Synthesis and Cyclization. European Journal of Organic Chemistry, 2003, 2003, 4792-4796.	2.4	21
67	Synthesis and Intramolecular Cyclization of Novel β,β-Bis-(benzo[b]thienyl)dehydroalanine Derivatives ChemInform, 2003, 34, no.	0.0	Ο
68	Electrochemical synthesis of diaminodicarboxylic acid derivatives. Tetrahedron Letters, 2003, 44, 2137-2139.	1.4	8
69	Synthesis and intramolecular cyclization of novel β,β-bis-(benzo[b]thienyl)dehydroalanine derivatives. Tetrahedron Letters, 2003, 44, 3377-3379.	1.4	26
70	Palladium-catalyzed borylation and Suzuki coupling (BSC) to obtain Î ² -substituted dehydroamino acid derivatives. Tetrahedron Letters, 2003, 44, 6007-6009.	1.4	14
71	High yield synthesis of heterocyclic \hat{I}^2 -substituted alanine derivatives. , 2002, , 70-71.		1
72	Synthesis of 2,3,5-substituted pyrrole derivatives. Tetrahedron Letters, 2002, 43, 4491-4493.	1.4	24

PAULA M.T. FERREIRA

#	Article	IF	CITATIONS
73	Synthesis of non-proteinogenic amino acids from N-(4-toluenesulfonyl)dehydroamino acid derivatives. Tetrahedron Letters, 2002, 43, 4495-4497.	1.4	13
74	Michael addition of thiols, carbon nucleophiles and amines to dehydroamino acid and dehydropeptide derivativesElectronic supplementary information (ESI) available: experimental data for compounds 1–15. See http://www.rsc.org/suppdata/p1/b1/b106487h/. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 3167-3173.	1.3	56
75	Novel aziridine esters by the addition of aromatic nitrogen heterocycles to a 2H-azirine-3-carboxylic ester. Tetrahedron Letters, 2000, 41, 4991-4995.	1.4	14
76	Synthesis of novel β-substituted α,β-dehydroamino acid derivatives. Tetrahedron Letters, 2000, 41, 7437-7441.	1.4	21
77	Synthesis of β-substituted alanines via Michael addition of nucleophiles to dehydroalanine derivatives. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 3317-3324.	1.3	31
78	High yielding synthesis of heterocyclic β-substituted alanine derivatives. Tetrahedron Letters, 1999, 40, 4099-4102.	1.4	36
79	High yielding synthesis of dehydroamino acid and dehydropeptide derivatives. Journal of the Chemical Society Perkin Transactions 1, 1999, , 3697-3703.	0.9	53
80	Efficient synthesis of dehydroamino acid derivatives. Tetrahedron Letters, 1998, 39, 9575-9578.	1.4	38