Samantha E Yohn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3964870/publications.pdf

Version: 2024-02-01

361413 395702 1,612 36 20 33 citations h-index g-index papers 36 36 36 1517 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sex differences in effort-related decision-making: role of dopamine D2 receptor antagonism. Psychopharmacology, 2021, 238, 1609-1619.	3.1	5
2	Activation of the mGlu1 metabotropic glutamate receptor has antipsychotic-like effects and is required for efficacy of M4 muscarinic receptor allosteric modulators. Molecular Psychiatry, 2020, 25, 2786-2799.	7.9	28
3	Further exploration of an N-aryl phenoxyethoxy pyridinone-based series of mGlu3 NAMs: Challenging SAR, enantiospecific activity and in vivo efficacy. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2670-2674.	2.2	O
4	VU6005806/AZN-00016130, an advanced M4 positive allosteric modulator (PAM) profiled as a potential preclinical development candidate. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1714-1718.	2.2	6
5	Shared Behavioral and Neurocircuitry Disruptions in Drug Addiction, Obesity, and Binge Eating Disorder: Focus on Group I mGluRs in the Mesolimbic Dopamine Pathway. ACS Chemical Neuroscience, 2019, 10, 2125-2143.	3.5	21
6	T119. Differences in Nucleus Accumbens Dopamine Release via Muscarinic Acetylcholine Receptor Subtypes: Implications for Manifestation of Negative Symptoms. Biological Psychiatry, 2019, 85, S175.	1.3	1
7	Chronic corticosterone administration induces negative valence and impairs positive valence behaviors in mice. Translational Psychiatry, 2019, 9, 337.	4.8	40
8	Discovery of an Orally Bioavailable and Central Nervous System (CNS) Penetrant mGlu ₇ Negative Allosteric Modulator (NAM) in Vivo Tool Compound: <i>N</i> -(2-(1 <i>+(i)-1,2,4-triazol-1-yl)-5-(trifluoromethoxy)phenyl)-4-(cyclopropylmethoxy)-3-methoxybenzamid (VU6012962). Journal of Medicinal Chemistry, 2019, 62, 1690-1695.</i>	le ^{6.4}	20
9	Pick Your Model Wisely: Understanding the Negative Symptoms of Schizophrenia in Rodent Models. ACS Chemical Neuroscience, 2019, 10, 33-35.	3.5	1
10	250. Anergia and Effort-Related Aspects of Motivational Dysfunction in Animal Models of Depressive Symptoms: The Role of Mesolimbic Dopamine and Related Circuitry. Biological Psychiatry, 2018, 83, S101.	1.3	0
11	Partial reversal of the effort-related motivational effects of tetrabenazine with the MAO-B inhibitor deprenyl (selegiline): Implications for treating motivational dysfunctions. Pharmacology Biochemistry and Behavior, 2018, 166, 13-20.	2.9	8
12	The monoamine-oxidase B inhibitor deprenyl increases selection of high-effort activity in rats tested on a progressive ratio/chow feeding choice procedure: Implications for treating motivational dysfunctions. Behavioural Brain Research, 2018, 342, 27-34.	2.2	8
13	Positive allosteric modulation of M 1 and M 4 muscarinic receptors as potential therapeutic treatments for schizophrenia. Neuropharmacology, 2018, 136, 438-448.	4.1	43
14	T227. THE METABOTROPIC GLUTAMATE RECEPTOR SUBTYPE 1 REGULATES STRIATAL DOPAMINE RELEASE VIA AN ENDOCANNABINOID-DEPENDENT MECHANISM: IMPLICATIONS FOR THE TREATMENT OF SCHIZOPHRENIA. Schizophrenia Bulletin, 2018, 44, S204-S205.	4.3	1
15	Inhibition of endocannabinoid degradation rectifies motivational and dopaminergic deficits in the Q175 mouse model of Huntington's disease. Neuropsychopharmacology, 2018, 43, 2056-2063.	5.4	25
16	Assessment of a glycine uptake inhibitor in animal models of effort-related choice behavior: implications for motivational dysfunctions. Psychopharmacology, 2017, 234, 1525-1534.	3.1	13
17	Oral Ingestion and Intraventricular Injection of Curcumin Attenuates the Effort-Related Effects of the VMAT-2 Inhibitor Tetrabenazine: Implications for Motivational Symptoms of Depression. Journal of Natural Products, 2017, 80, 2839-2844.	3.0	11
18	Cholinergic Projections to the Substantia Nigra Pars Reticulata Inhibit Dopamine Modulation of Basal Ganglia through the M4 Muscarinic Receptor. Neuron, 2017, 96, 1358-1372.e4.	8.1	43

#	Article	IF	CITATIONS
19	Behavioral activation, effort-based choice, and elasticity of demand for motivational stimuli: Basic and translational neuroscience approaches Motivation Science, 2017, 3, 208-229.	1.6	27
20	Blockade of uptake for dopamine, but not norepinephrine or 5-HT, increases selection of high effort instrumental activity: Implications for treatment of effort-related motivational symptoms in psychopathology. Neuropharmacology, 2016, 109, 270-280.	4.1	64
21	Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology. Brain, 2016, 139, 1325-1347.	7.6	267
22	Evaluation of the effort-related motivational effects of the novel dopamine uptake inhibitor PRX-14040. Pharmacology Biochemistry and Behavior, 2016, 148, 84-91.	2.9	37
23	Effort-related motivational effects of the pro-inflammatory cytokine interleukin-6: pharmacological and neurochemical characterization. Psychopharmacology, 2016, 233, 3575-3586.	3.1	67
24	The pharmacology of effort-related choice behavior: Dopamine, depression, and individual differences. Behavioural Processes, 2016, 127, 3-17.	1.1	102
25	Effects of lisdexamfetamine and s-citalopram, alone and in combination, on effort-related choice behavior in the rat. Psychopharmacology, 2016, 233, 949-960.	3.1	61
26	The MAO-B inhibitor deprenyl reduces the oral tremor and the dopamine depletion induced by the VMAT-2 inhibitor tetrabenazine. Behavioural Brain Research, 2016, 298, 188-191.	2.2	13
27	Not All Antidepressants Are Created Equal: Differential Effects of Monoamine Uptake Inhibitors on Effort-Related Choice Behavior. Neuropsychopharmacology, 2016, 41, 686-694.	5.4	60
28	The role of dopamine D1 receptor transmission in effort-related choice behavior: Effects of D1 agonists. Pharmacology Biochemistry and Behavior, 2015, 135, 217-226.	2.9	87
29	Fluoxetine Administration Exacerbates Oral Tremor and Striatal Dopamine Depletion in a Rodent Pharmacological Model of Parkinsonism. Neuropsychopharmacology, 2015, 40, 2240-2247.	5.4	16
30	The VMAT-2 inhibitor tetrabenazine alters effort-related decision making as measured by the T-maze barrier choice task: reversal with the adenosine A2A antagonist MSX-3 and the catecholamine uptake blocker bupropion. Psychopharmacology, 2015, 232, 1313-1323.	3.1	84
31	Bupropion Increases Selection of High Effort Activity in Rats Tested on a Progressive Ratio/Chow Feeding Choice Procedure: Implications for Treatment of Effort-Related Motivational Symptoms. International Journal of Neuropsychopharmacology, 2015, 18, pyu017-pyu017.	2.1	77
32	Mesolimbic Dopamine and the Regulation of Motivated Behavior. Current Topics in Behavioral Neurosciences, 2015, 27, 231-257.	1.7	149
33	The VMAT-2 Inhibitor Tetrabenazine Affects Effort-Related Decision Making in a Progressive Ratio/Chow Feeding Choice Task: Reversal with Antidepressant Drugs. PLoS ONE, 2014, 9, e99320.	2.5	82
34	Neusilin® influences curcumin bioavailability and antiâ€depressant efficacy in rats (1044.17). FASEB Journal, 2014, 28, 1044.17.	0.5	0
35	Tremorolytic effects of safinamide in animal models of drug-induced parkinsonian tremor. Pharmacology Biochemistry and Behavior, 2013, 105, 105-111.	2.9	31
36	Effort-Related Motivational Effects of the VMAT-2 Inhibitor Tetrabenazine: Implications for Animal Models of the Motivational Symptoms of Depression. Journal of Neuroscience, 2013, 33, 19120-19130.	3.6	114

3