Gleb Yushin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3963689/publications.pdf Version: 2024-02-01

	5896	5539
34,766	81	163
citations	h-index	g-index
172	172	29185
docs citations	times ranked	citing authors
	34,766 citations 172 docs citations	34,76681citationsh-index172172docs citations172times ranked

#	Article	IF	CITATIONS
1	High-Temperature Oxidation of Single Carbon Nanoparticles: Dependence on the Surface Structure and Probing Real-Time Structural Evolution via Kinetics. Journal of the American Chemical Society, 2022, 144, 4897-4912.	13.7	5
2	Synthesis of Mg Alkoxide Nanowires from Mg Alkoxide Nanoparticles upon Ligand Exchange. ACS Applied Materials & Interfaces, 2022, 14, 13820-13827.	8.0	0
3	Stability of FeF ₃ -Based Sodium-Ion Batteries in Nonflammable Ionic Liquid Electrolytes at Room and Elevated Temperatures. ACS Applied Materials & Interfaces, 2022, 14, 33447-33456.	8.0	5
4	Battery materials for low-cost electric transportation. Materials Today, 2021, 42, 57-72.	14.2	98
5	Atom-economic synthesis of Magnéli phase Ti4O7 microspheres for improved sulfur cathodes for Li–S batteries. Nano Energy, 2021, 79, 105428.	16.0	49
6	Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries. Nature Materials, 2021, 20, 984-990.	27.5	105
7	Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries. Materials Today, 2021, 48, 176-197.	14.2	66
8	Strategies for fabrication, confinement and performance boost of Li2S in lithium-sulfur, silicon-sulfur & related batteries. Materials Today, 2021, 49, 253-270.	14.2	29
9	Strain-Induced Transformation of Bulk Alloys to Zinc Nanowires. Chemistry of Materials, 2021, 33, 5368-5376.	6.7	1
10	Iron Phosphide Confined in Carbon Nanofibers as a Free-Standing Flexible Anode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 34074-34083.	8.0	24
11	Minimizing Long-Chain Polysulfide Formation in Li-S Batteries by Using Localized Low Concentration Highly Fluorinated Electrolytes. Journal of the Electrochemical Society, 2021, 168, 090543.	2.9	8
12	A Naphthalene Diimide Covalent Organic Framework: Comparison of Cathode Performance in Lithium-Ion Batteries with Amorphous Cross-linked and Linear Analogues, and Its Use in Aqueous Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 350-356.	5.1	20
13	Conversion of Mgâ€Li Bimetallic Alloys to Magnesium Alkoxide and Magnesium Oxide Ceramic Nanowires. Angewandte Chemie - International Edition, 2020, 59, 403-408.	13.8	9
14	Anatase TiO ₂ Confined in Carbon Nanopores for Highâ€Energy Liâ€Ion Hybrid Supercapacitors Operating at High Rates and Subzero Temperatures. Advanced Energy Materials, 2020, 10, 1902993.	19.5	39
15	Conversion of Mgâ€Li Bimetallic Alloys to Magnesium Alkoxide and Magnesium Oxide Ceramic Nanowires. Angewandte Chemie, 2020, 132, 411-416.	2.0	1
16	Solid-state lithium–sulfur batteries: Advances, challenges and perspectives. Materials Today, 2020, 40, 114-131.	14.2	100
17	Boosting High-Performance in Lithium–Sulfur Batteries via Dilute Electrolyte. Nano Letters, 2020, 20, 5391-5399.	9.1	93
18	Tuning Low Concentration Electrolytes for High Rate Performance in Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2020, 167, 100512.	2.9	24

#	Article	IF	CITATIONS
19	Scalable, safe, high-rate supercapacitor separators based on the Al2O3 nanowire Polyvinyl butyral nonwoven membranes. Nano Energy, 2020, 71, 104627.	16.0	43
20	A nanoconfined iron(<scp>iii</scp>) fluoride cathode in a NaDFOB electrolyte: towards high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 4091-4098.	10.3	28
21	Understanding Liâ€lon Dynamics in Lithium Hydroxychloride (Li 2 OHCl) Solid State Electrolyte via Addressing the Role of Protons. Advanced Energy Materials, 2020, 10, 1903480.	19.5	29
22	Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites. Nature Materials, 2019, 18, 1343-1349.	27.5	127
23	Flexible Nanofiberâ€Reinforced Solid Polymer Lithiumâ€ l on Battery. Energy Technology, 2019, 7, 1900064.	3.8	6
24	Insights into the Effects of Electrolyte Composition on the Performance and Stability of FeF ₂ Conversionâ€Type Cathodes. Advanced Energy Materials, 2019, 9, 1803323.	19.5	56
25	Carbons from Biomass for Electrochemical Capacitors. Biofuels and Biorefineries, 2019, , 153-184.	0.5	2
26	Aluminum oxide nanowires as safe and effective adjuvants for next-generation vaccines. Materials Today, 2019, 22, 58-66.	14.2	30
27	Fading Mechanisms and Voltage Hysteresis in FeF ₂ –NiF ₂ Solid Solution Cathodes for Lithium and Lithiumâ€Ion Batteries. Small, 2019, 15, e1804670.	10.0	62
28	Hierarchical Fabric Decorated with Carbon Nanowire/Metal Oxide Nanocomposites for 1.6 V Wearable Aqueous Supercapacitors. Advanced Energy Materials, 2018, 8, 1703454.	19.5	135
29	Lithium Titanate Confined in Nanoporous Copper for High-Rate Battery Applications. MRS Advances, 2018, 3, 1249-1253.	0.9	1
30	Layered LiTiO ₂ for the protection of Li ₂ S cathodes against dissolution: mechanisms of the remarkable performance boost. Energy and Environmental Science, 2018, 11, 807-817.	30.8	103
31	Iron Phosphate Coated Flexible Carbon Nanotube Fabric as a Multifunctional Cathode for Naâ€lon Batteries. Small, 2018, 14, e1703425.	10.0	33
32	Morphology and Phase Changes in Iron Anodes Affecting their Capacity and Stability in Rechargeable Alkaline Batteries. ACS Energy Letters, 2018, 3, 794-801.	17.4	35
33	Mixed Metal Difluorides as High Capacity Conversionâ€Type Cathodes: Impact of Composition on Stability and Performance. Advanced Energy Materials, 2018, 8, 1800213.	19.5	29
34	Conformal vapor deposition of iron phosphate onto carbon nanotubes for flexible high-rate cathodes. Materials Today Energy, 2018, 8, 143-150.	4.7	5
35	Materials for supercapacitors: When Li-ion battery power is not enough. Materials Today, 2018, 21, 419-436.	14.2	335
36	lon Conductivities: Protons Enhance Conductivities in Lithium Halide Hydroxide/Lithium Oxyhalide Solid Electrolytes by Forming Rotating Hydroxy Groups (Adv. Energy Mater. 3/2018). Advanced Energy Materials, 2018, 8, 1870014.	19.5	2

#	Article	IF	CITATIONS
37	Synthesis of copper oxide nanowires and nanoporous copper <i>via</i> environmentally friendly transformation of bulk copper–calcium alloys. Chemical Communications, 2018, 54, 5446-5449.	4.1	5
38	Iron oxide nanoconfined in carbon nanopores as high capacity anode for rechargeable alkaline batteries. Nano Energy, 2018, 48, 170-179.	16.0	31
39	Protons Enhance Conductivities in Lithium Halide Hydroxide/Lithium Oxyhalide Solid Electrolytes by Forming Rotating Hydroxy Groups. Advanced Energy Materials, 2018, 8, 1700971.	19.5	65
40	Robust and Flexible Micropatterned Electrodes and Microâ€Supercapacitors in Graphene–Silk Biopapers. Advanced Materials Interfaces, 2018, 5, 1801203.	3.7	16
41	Understanding the Exceptional Performance of Lithiumâ€lon Battery Cathodes in Aqueous Electrolytes at Subzero Temperatures. Advanced Energy Materials, 2018, 8, 1802624.	19.5	90
42	Mechanisms of Transformation of Bulk Aluminum–Lithium Alloys to Aluminum Metal–Organic Nanowires. Journal of the American Chemical Society, 2018, 140, 12493-12500.	13.7	15
43	Iron Fluoride–Carbon Nanocomposite Nanofibers as Freeâ€Standing Cathodes for Highâ€Energy Lithium Batteries. Advanced Functional Materials, 2018, 28, 1801711.	14.9	97
44	Ten years left to redesign lithium-ion batteries. Nature, 2018, 559, 467-470.	27.8	393
45	Lithium–Iron (III) Fluoride Battery with Double Surface Protection. Advanced Energy Materials, 2018, 8, 1800721.	19.5	67
46	Transformation of bulk alloys to oxide nanowires. Science, 2017, 355, 267-271.	12.6	76
47	A stable lithiated silicon–chalcogen battery via synergetic chemical coupling between silicon and selenium. Nature Communications, 2017, 8, 13888.	12.8	46
48	Charge storage at the nanoscale: understanding the trends from the molecular scale perspective. Journal of Materials Chemistry A, 2017, 5, 21049-21076.	10.3	58
49	Enhancing electrochemical performance of LiFePO4 by vacuum-infiltration into expanded graphite for aqueous Li-ion capacitors. Electrochimica Acta, 2017, 253, 413-421.	5.2	11
50	In situ surface protection for enhancing stability and performance of conversion-type cathodes. MRS Energy & Sustainability, 2017, 4, 1.	3.0	47
51	Toward in-situ protected sulfur cathodes by using lithium bromide and pre-charge. Nano Energy, 2017, 40, 170-179.	16.0	53
52	Capacitive Energy Storage. World Scientific Series in Current Energy Issues, 2017, , 167-214.	0.1	5
53	Toward a Long-Chain Perfluoroalkyl Replacement: Water and Oil Repellency of Polyethylene Terephthalate (PET) Films Modified with Perfluoropolyether-Based Polyesters. ACS Applied Materials & Interfaces, 2017, 9, 24318-24330.	8.0	19
54	Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy and Environmental Science, 2017, 10, 435-459.	30.8	545

#	Article	IF	CITATIONS
55	Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors. Carbon, 2017, 113, 283-291.	10.3	171
56	Capacitive Energy Storage. World Scientific Series in Current Energy Issues, 2017, , 167-214.	0.1	0
57	Enhancing the Stability of Sulfur Cathodes in Li–S Cells via in Situ Formation of a Solid Electrolyte Layer. ACS Energy Letters, 2016, 1, 373-379.	17.4	61
58	Enhancing Cycle Stability of Lithium Iron Phosphate in Aqueous Electrolytes by Increasing Electrolyte Molarity. Advanced Energy Materials, 2016, 6, 1501805.	19.5	37
59	Conversion Cathodes: Lithium–Iron Fluoride Battery with In Situ Surface Protection (Adv. Funct.) Tj ETQq1 1 0.	784314 r 14.9	gBŢ /Overloc
60	Degradation and stabilization of lithium cobalt oxide in aqueous electrolytes. Energy and Environmental Science, 2016, 9, 1841-1848.	30.8	80
61	Influence of Binders, Carbons, and Solvents on the Stability of Phosphorus Anodes for Li-ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 25991-26001.	8.0	41
62	Nanostructured Li2Se cathodes for high performance lithium-selenium batteries. Nano Energy, 2016, 27, 238-246.	16.0	54
63	Lithium–Iron Fluoride Battery with In Situ Surface Protection. Advanced Functional Materials, 2016, 26, 1507-1516.	14.9	73
64	Infiltrated Porous Polymer Sheets as Freeâ€Standing Flexible Lithiumâ€Sulfur Battery Electrodes. Advanced Materials, 2016, 28, 6365-6371.	21.0	102
65	Revealing Rate Limitations in Nanocrystalline Li ₄ Ti ₅ O ₁₂ Anodes for Highâ€Power Lithium Ion Batteries. Advanced Materials Interfaces, 2016, 3, 1600003.	3.7	21
66	Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes. Journal of Power Sources, 2016, 326, 569-574.	7.8	59
67	Performance Enhancement and Side Reactions in Rechargeable Nickel–Iron Batteries with Nanostructured Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 2088-2096.	8.0	62
68	Graphene–Li ₂ S–Carbon Nanocomposite for Lithium–Sulfur Batteries. ACS Nano, 2016, 10, 1333-1340.	14.6	144
69	Lithium Titanate Confined in Carbon Nanopores for Asymmetric Supercapacitors. ACS Nano, 2016, 10, 3977-3984.	14.6	99
70	Lithium Sulfide Cathodes: A Hierarchical Particle-Shell Architecture for Long-Term Cycle Stability of Li2 S Cathodes (Adv. Mater. 37/2015). Advanced Materials, 2015, 27, 5578-5578.	21.0	1
71	In Situ TEM Observation of Electrochemical Lithiation of Sulfur Confined within Inner Cylindrical Pores of Carbon Nanotubes. Advanced Energy Materials, 2015, 5, 1501306.	19.5	93
72	Carbon Nanotube–CoF ₂ Multifunctional Cathode for Lithium Ion Batteries: Effect of Electrolyte on Cycle Stability. Small, 2015, 11, 5164-5173.	10.0	80

#	Article	IF	CITATIONS
73	A Hierarchical Particle–Shell Architecture for Longâ€Term Cycle Stability of Li ₂ S Cathodes. Advanced Materials, 2015, 27, 5579-5586.	21.0	111
74	Nanostructured composites for high energy batteries and supercapacitors. , 2015, , .		2
75	Increasing Capacitance of Zeolite-Templated Carbons in Electric Double Layer Capacitors. Journal of the Electrochemical Society, 2015, 162, A5070-A5076.	2.9	29
76	Influence of annealing on ionic transfer and storage stability of Li2S–P2S5 solid electrolyte. Journal of Power Sources, 2015, 294, 494-500.	7.8	41
77	Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors. Energy and Environmental Science, 2015, 8, 1889-1904.	30.8	236
78	In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSIâ€Based Organic Electrolytes. Advanced Energy Materials, 2015, 5, 1401792.	19.5	189
79	Li-ion battery materials: present and future. Materials Today, 2015, 18, 252-264.	14.2	5,353
80	Lithium Iodide as a Promising Electrolyte Additive for Lithium–Sulfur Batteries: Mechanisms of Performance Enhancement. Advanced Materials, 2015, 27, 101-108.	21.0	304
81	Micro―and Mesoporous Carbideâ€Derived Carbon–Selenium Cathodes for Highâ€Performance Lithium Selenium Batteries. Advanced Energy Materials, 2015, 5, 1400981.	19.5	144
82	Stabilization of selenium cathodes via in situ formation of protective solid electrolyte layer. Journal of Materials Chemistry A, 2014, 2, 18898-18905.	10.3	32
83	Supercapacitors specialities - Technology review. AIP Conference Proceedings, 2014, , .	0.4	18
84	Highâ€Capacity Anode Materials for Lithiumâ€lon Batteries: Choice of Elements and Structures for Active Particles. Particle and Particle Systems Characterization, 2014, 31, 317-336.	2.3	583
85	Harnessing Steric Separation of Freshly Nucleated Li ₂ S Nanoparticles for Bottomâ€Up Assembly of Highâ€Performance Cathodes for Lithiumâ€6ulfur and Lithiumâ€Ion Batteries. Advanced Energy Materials, 2014, 4, 1400196.	19.5	135
86	Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbideâ€derived carbon, zeoliteâ€ŧemplated carbon, carbon aerogels, carbon nanotubes, onionâ€like carbon, and graphene. Wiley Interdisciplinary Reviews: Energy and Environment, 2014, 3, 424-473	4.1	459
87	<i>In Situ</i> Small Angle Neutron Scattering Revealing Ion Sorption in Microporous Carbon Electrical Double Layer Capacitors. ACS Nano, 2014, 8, 2495-2503.	14.6	89
88	Solutionâ€Based Processing of Graphene–Li ₂ S Composite Cathodes for Lithiumâ€lon and Lithium–Sulfur Batteries. Particle and Particle Systems Characterization, 2014, 31, 639-644.	2.3	99
89	Effects of Dissolved Transition Metals on the Electrochemical Performance and SEI Growth in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A1915-A1921.	2.9	153
90	Micro- and mesoporous carbide-derived carbon prepared by a sacrificial template method in high performance lithium sulfur battery cathodes. Journal of Materials Chemistry A, 2014, 2, 17649-17654.	10.3	54

#	Article	IF	CITATIONS
91	Nanoporous Li ₂ S and MWCNT-linked Li ₂ S powder cathodes for lithium-sulfur and lithium-ion battery chemistries. Journal of Materials Chemistry A, 2014, 2, 6064-6070.	10.3	128
92	Sulfur infiltrated activated carbon cathodes for lithium sulfur cells: The combined effects of pore size distribution and electrolyte molarity. Journal of Power Sources, 2014, 248, 752-761.	7.8	77
93	Hydrothermal synthesis of microalgae-derived microporous carbons for electrochemical capacitors. Journal of Power Sources, 2014, 267, 26-32.	7.8	158
94	Electrodeposition of Nanostructured Magnesium Coatings. Nanomaterials and Nanotechnology, 2014, 4, 30.	3.0	10
95	Multifunctional CNTâ€Polymer Composites for Ultraâ€Tough Structural Supercapacitors and Desalination Devices. Advanced Materials, 2013, 25, 6625-6632.	21.0	140
96	Enhancing performance of Li–S cells using a Li–Al alloy anode coating. Electrochemistry Communications, 2013, 36, 38-41.	4.7	75
97	Sulfurâ€Infiltrated Micro―and Mesoporous Silicon Carbideâ€Derived Carbon Cathode for Highâ€Performance Lithium Sulfur Batteries. Advanced Materials, 2013, 25, 4573-4579.	21.0	296
98	High temperature stabilization of lithium–sulfur cells with carbon nanotube current collector. Journal of Power Sources, 2013, 226, 256-265.	7.8	83
99	Functionalized carbon onions, detonation nanodiamond and mesoporous carbon as cathodes in Li-ion electrochemical energy storage devices. Carbon, 2013, 53, 292-301.	10.3	102
100	Synthesis and electrochemical performance of reduced graphene oxide/maghemite composite anode for lithium ion batteries. Carbon, 2013, 52, 56-64.	10.3	143
101	Smallâ€Angle Neutron Scattering for Inâ€Situ Probing of Ion Adsorption Inside Micropores. Angewandte Chemie - International Edition, 2013, 52, 4618-4622.	13.8	61
102	Comparative study of the solid electrolyte interphase on graphite in full Li-ion battery cells using X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and electron microscopy. Carbon, 2013, 52, 388-397.	10.3	75
103	Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. Energy and Environmental Science, 2013, 6, 2465.	30.8	309
104	Plasmaâ€Enhanced Atomic Layer Deposition of Ultrathin Oxide Coatings for Stabilized Lithium–Sulfur Batteries. Advanced Energy Materials, 2013, 3, 1308-1315.	19.5	133
105	Lithographically Patterned Thin Activated Carbon Films as a New Technology Platform for On-Chip Devices. ACS Nano, 2013, 7, 6498-6506.	14.6	90
106	Effect of defects on graphitization of SiC. Journal of Materials Research, 2013, 28, 952-957.	2.6	4
107	Capacitive Electric Storage. Materials and Energy, 2013, , 373-404.	0.1	1
108	Ultra Strong Silicon-Coated Carbon Nanotube Nonwoven Fabric as a Multifunctional Lithium-Ion Battery Anode. ACS Nano, 2012, 6, 9837-9845.	14.6	161

#	Article	IF	CITATIONS
109	Challenges Facing Lithium Batteries and Electrical Double‣ayer Capacitors. Angewandte Chemie - International Edition, 2012, 51, 9994-10024.	13.8	2,407
110	Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy, 2012, 1, 552-565.	16.0	468
111	Chemical Vapor Deposition of Aluminum Nanowires on Metal Substrates for Electrical Energy Storage Applications. ACS Nano, 2012, 6, 118-125.	14.6	93
112	Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy and Environmental Science, 2012, 5, 6872.	30.8	453
113	In Situ Studies of Ion Transport in Microporous Supercapacitor Electrodes at Ultralow Temperatures. Advanced Functional Materials, 2012, 22, 1655-1662.	14.9	96
114	Polypyrroleâ€Derived Activated Carbons for Highâ€Performance Electrical Doubleâ€Layer Capacitors with Ionic Liquid Electrolyte. Advanced Functional Materials, 2012, 22, 827-834.	14.9	396
115	Towards Ultrathick Battery Electrodes: Aligned Carbon Nanotube – Enabled Architecture. Advanced Materials, 2012, 24, 533-537.	21.0	257
116	<i>N</i> -Nitrosamines Formation from Secondary Amines by Nitrogen Fixation on the Surface of Activated Carbon. Environmental Science & amp; Technology, 2011, 45, 8368-8376.	10.0	46
117	Ex Situ Depth-Sensing Indentation Measurements of Electrochemically Produced Si-Li Alloy Films. ECS Meeting Abstracts, 2011, , .	0.0	0
118	Ex-situ depth-sensing indentation measurements of electrochemically produced Si–Li alloy films. Electrochemistry Communications, 2011, 13, 818-821.	4.7	125
119	A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries. Science, 2011, 334, 75-79.	12.6	1,549
120	Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High-Performance Supercapacitor Electrodes. Advanced Energy Materials, 2011, , n/a-n/a.	19.5	0
121	Hierarchical Micro―and Mesoporous Carbideâ€Derived Carbon as a Highâ€Performance Electrode Material in Supercapacitors. Small, 2011, 7, 1108-1117.	10.0	283
122	Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for Highâ€Performance Supercapacitor Electrodes. Advanced Energy Materials, 2011, 1, 356-361.	19.5	538
123	Nanosiliconâ€Coated Graphene Granules as Anodes for Liâ€lon Batteries. Advanced Energy Materials, 2011, 1, 495-498.	19.5	241
124	Electrical double layer capacitors with activated sucrose-derived carbon electrodes. Carbon, 2011, 49, 4830-4838.	10.3	85
125	Electrical double layer capacitors with sucrose derived carbon electrodes in ionic liquid electrolytes. Journal of Power Sources, 2011, 196, 4072-4079.	7.8	105
126	Detonation Nanodiamond and Onionâ€Likeâ€Carbonâ€Embedded Polyaniline for Supercapacitors. Advanced Functional Materials, 2010, 20, 3979-3986.	14.9	245

#	Article	IF	CITATIONS
127	Mesoporous carbide-derived carbon for cytokine removal from blood plasma. Biomaterials, 2010, 31, 4789-4794.	11.4	46
128	A cubic ordered, mesoporous carbide-derived carbon for gas and energy storage applications. Carbon, 2010, 48, 3987-3992.	10.3	140
129	High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Materials, 2010, 9, 353-358.	27.5	1,844
130	Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid. ACS Applied Materials & Interfaces, 2010, 2, 3004-3010.	8.0	901
131	High-Rate Electrochemical Capacitors Based on Ordered Mesoporous Silicon Carbide-Derived Carbon. ACS Nano, 2010, 4, 1337-1344.	14.6	447
132	Deformations in Siâ^'Li Anodes Upon Electrochemical Alloying in Nano-Confined Space. Journal of the American Chemical Society, 2010, 132, 8548-8549.	13.7	300
133	Tailoring the Pore Alignment for Rapid Ion Transport in Microporous Carbons. Journal of the American Chemical Society, 2010, 132, 3252-3253.	13.7	175
134	Analysis of Lithium Insertion/Deinsertion in a Silicon Electrode Particle at Room Temperature. Journal of the Electrochemical Society, 2010, 157, A1139.	2.9	112
135	Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors. Journal of Materials Research, 2010, 25, 1525-1531.	2.6	142
136	The Role of Nanostructure in the Electrochemical Oxidation of Model-Carbon Materials in Acidic Environments. Journal of the Electrochemical Society, 2010, 157, B820.	2.9	37
137	Nanodiamond-Polymer Composite Fibers and Coatings. ACS Nano, 2009, 3, 363-369.	14.6	278
138	Bactericidal activity of chlorineâ€loaded carbideâ€derived carbon against <i>Escherichia coli</i> and <i>Bacillus anthracis</i> . Journal of Biomedical Materials Research - Part A, 2008, 84A, 607-613.	4.0	6
139	Micro and mesoporosity of carbon derived from ternary and binary metal carbides. Microporous and Mesoporous Materials, 2008, 112, 526-532.	4.4	108
140	Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon, 2008, 46, 841-849.	10.3	123
141	Carbide-derived carbon membrane. Materials Chemistry and Physics, 2008, 112, 587-591.	4.0	18
142	Effect of Carbon Particle Size on Electrochemical Performance of EDLC. Journal of the Electrochemical Society, 2008, 155, A531.	2.9	173
143	Increase of nanodiamond crystal size by selective oxidation. Diamond and Related Materials, 2008, 17, 1122-1126.	3.9	65
144	High Temperature Functionalization and Surface Modification of Nanodiamond Powders. Materials Research Society Symposia Proceedings, 2007, 1039, 1.	0.1	9

#	Article	IF	CITATIONS
145	Plasma pressure compaction of nanodiamond. Diamond and Related Materials, 2007, 16, 1967-1973.	3.9	18
146	Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon, 2007, 45, 2511-2518.	10.3	659
147	Anisotropic Etching of SiC Whiskers. Nano Letters, 2006, 6, 548-551.	9.1	93
148	Carbide-Derived Carbons:Â A Comparative Study of Porosity Based on Small-Angle Scattering and Adsorption Isotherms. Langmuir, 2006, 22, 8945-8950.	3.5	79
149	Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science, 2006, 313, 1760-1763.	12.6	3,404
150	Formation of Porous SiC Ceramics by Pyrolysis of Wood Impregnated with Silica. International Journal of Applied Ceramic Technology, 2006, 3, 485-490.	2.1	39
151	Formation of Carbide-Derived Carbon on beta-Silicon Carbide Whiskers. Journal of the American Ceramic Society, 2006, 89, 509-514.	3.8	92
152	Titanium carbide derived nanoporous carbon for energy-related applications. Carbon, 2006, 44, 2489-2497.	10.3	351
153	Effect of pore size and surface area of carbide derived carbons on specific capacitance. Journal of Power Sources, 2006, 158, 765-772.	7.8	591
154	Control of sp2/sp3Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air. Journal of the American Chemical Society, 2006, 128, 11635-11642.	13.7	809
155	Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines. Biomaterials, 2006, 27, 5755-5762.	11.4	119
156	Carbide-Derived Carbons: Effect of Pore Size on Hydrogen Uptake and Heat of Adsorption. Advanced Functional Materials, 2006, 16, 2288-2293.	14.9	379
157	Carbide-Derived Carbon. Advanced Materials and Technologies, 2006, , 211-254.	0.4	9
158	Synthesis, structure and porosity analysis of microporous and mesoporous carbon derived from zirconium carbide. Microporous and Mesoporous Materials, 2005, 86, 50-57.	4.4	161
159	Synthesis of nanoporous carbide-derived carbon by chlorination of titanium silicon carbide. Carbon, 2005, 43, 2075-2082.	10.3	139
160	Tailoring of Nanoscale Porosity in Carbide-Derived Carbons for Hydrogen Storage. Journal of the American Chemical Society, 2005, 127, 16006-16007.	13.7	318
161	Double-Layer Capacitance of Carbide Derived Carbons in Sulfuric Acid. Electrochemical and Solid-State Letters, 2005, 8, A357.	2.2	79
162	Synthesis of Carbide-Derived Carbon by Chlorination of Ti2AlC. Chemistry of Materials, 2005, 17, 2317-2322.	6.7	87

		Gleb Yushin		
#	Article	IF	CITATIONS	
163	Effect of sintering on structure of nanodiamond. Diamond and Related Materials, 2005, 14, 1721-1	729. 3.9	106	