Robert Wysocki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3963383/publications.pdf

Version: 2024-02-01

50 6,396 23
papers citations h-index

52 52 52 6928
all docs docs citations times ranked citing authors

47

g-index

#	Article	IF	Citations
1	Etp1 confers arsenite resistance by affecting <i>ACR3</i> expression. FEMS Yeast Research, 2022, , .	2.3	1
2	Complex Mechanisms of Antimony Genotoxicity in Budding Yeast Involves Replication and Topoisomerase I-Associated DNA Lesions, Telomere Dysfunction and Inhibition of DNA Repair. International Journal of Molecular Sciences, 2021, 22, 4510.	4.1	4
3	Chapter 12 Molecular mechanisms of antimony transport and detoxification., 2021,, 275-302.		1
4	Protein-fragment complementation assays for large-scale analysis of protein–protein interactions. Biochemical Society Transactions, 2021, 49, 1337-1348.	3.4	16
5	The ancillary N-terminal region of the yeast AP-1 transcription factor Yap8 contributes to its DNA binding specificity. Nucleic Acids Research, 2020, 48, 5426-5441.	14.5	7
6	Coupling of RNA polymerase III assembly to cell cycle progression in <i>Saccharomyces cerevisiae</i> Cell Cycle, 2019, 18, 500-510.	2.6	3
7	Rsp5-dependent endocytosis and degradation of the arsenite transporter Acr3 requires its N-terminal acidic tail as an endocytic sorting signal and arrestin-related ubiquitin-ligase adaptors. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 916-925.	2.6	15
8	New insights into cohesin loading. Current Genetics, 2018, 64, 53-61.	1.7	29
9	The Emerging Role of Cohesin in the DNA Damage Response. Genes, 2018, 9, 581.	2.4	62
10	Errorâ€free <scp>DNA</scp> damage tolerance pathway is facilitated by the Irc5 translocase through cohesin. EMBO Journal, 2018, 37, .	7.8	14
11	Transmembrane topology of the arsenite permease Acr3 from Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 117-125.	2.6	8
12	The LSH/HELLS homolog Irc5 contributes to cohesin association with chromatin in yeast. Nucleic Acids Research, 2017, 45, 6404-6416.	14.5	16
13	DNA Damage Tolerance Pathway Choice Through Uls1 Modulation of Srs2 SUMOylation in <i>Saccharomyces cerevisiae</i> . Genetics, 2017, 206, 513-525.	2.9	8
14	Disentangling genetic and epigenetic determinants of ultrafast adaptation. Molecular Systems Biology, 2016, 12, 892.	7.2	9
15	The mitogenâ€activated protein kinase Slt2 modulates arsenite transport through the aquaglyceroporin Fps1. FEBS Letters, 2016, 590, 3649-3659.	2.8	21
16	Identification of critical residues for transport activity of <scp>A</scp> cr3p, the <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> ê <scp>A</scp> s(<scp>III</scp>)/ <scp>H</scp> ⁺ antiporter. Molecular Microbiology, 2015, 98, 162-174.	2.5	8
17	Multiple cysteine residues are necessary for sorting and transport activity of the arsenite permease Acr3p from Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 747-755.	2.6	17
18	Elucidating the response of Kluyveromyces lactis to arsenite and peroxide stress and the role of the transcription factor KlYap8. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1295-1306.	1.9	8

#	Article	IF	CITATIONS
19	Swi2/Snf2-like protein Uls1 functions in the Sgs1-dependent pathway of maintenance of rDNA stability and alleviation of replication stress. DNA Repair, 2014, 21, 24-35.	2.8	8
20	Oxidative Stress and Replication-Independent DNA Breakage Induced by Arsenic in Saccharomyces cerevisiae. PLoS Genetics, 2013, 9, e1003640.	3.5	34
21	Arsenic and Antimony Transporters in Eukaryotes. International Journal of Molecular Sciences, 2012, 13, 3527-3548.	4.1	128
22	Acr3p is a plasma membrane antiporter that catalyzes As(III)/H+ and Sb(III)/H+ exchange in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1855-1859.	2.6	53
23	Structure of E69Q mutant of human muscle fructose-1,6-bisphosphatase. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 1028-1034.	2.5	11
24	The Swi2–Snf2-like protein Uls1 is involved in replication stress response. Nucleic Acids Research, 2011, 39, 8765-8777.	14.5	26
25	Saccharomyces cerevisiae as a Model Organism for Elucidating Arsenic Tolerance Mechanisms. , 2011, , 87-112.		13
26	Design, Synthesis, and Characterization of a Highly Effective Hog1 Inhibitor: A Powerful Tool for Analyzing MAP Kinase Signaling in Yeast. PLoS ONE, 2011, 6, e20012.	2.5	23
27	The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel. FEBS Letters, 2010, 584, 726-732.	2.8	56
28	How <i>Saccharomyces cerevisiae</i> copes with toxic metals and metalloids. FEMS Microbiology Reviews, 2010, 34, 925-951.	8.6	254
29	The yeast permease Acr3p is a dual arsenite and antimonite plasma membrane transporter. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2170-2175.	2.6	34
30	Mitogen-Activated Protein Kinase Hog1 Mediates Adaptation to G $<$ sub $>$ 1 $<$ /sub $>$ Checkpoint Arrest during Arsenite and Hyperosmotic Stress. Eukaryotic Cell, 2008, 7, 1309-1317.	3.4	27
31	Characterization of the DNA-binding motif of the arsenic-responsive transcription factor Yap8p. Biochemical Journal, 2008, 415, 467-475.	3.7	35
32	CDK Pho85 targets CDK inhibitor Sic1 to relieve yeast G1 checkpoint arrest after DNA damage. Nature Structural and Molecular Biology, 2006, 13, 908-914.	8.2	36
33	The MAPK Hog1p Modulates Fps1p-dependent Arsenite Uptake and Tolerance in Yeast. Molecular Biology of the Cell, 2006, 17, 4400-4410.	2.1	177
34	Yeast G1 DNA damage checkpoint regulation by H2A phosphorylation is independent of chromatin remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13771-13776.	7.1	77
35	Mechanisms of toxic metal tolerance in yeast. Topics in Current Genetics, 2005, , 395-454.	0.7	27
36	Role of Dot1-Dependent Histone H3 Methylation in G1 and S Phase DNA Damage Checkpoint Functions of Rad9. Molecular and Cellular Biology, 2005, 25, 8430-8443.	2.3	268

#	Article	IF	Citations
37	Yeast cell death during DNA damage arrest is independent of caspase or reactive oxygen species. Journal of Cell Biology, 2004, 166, 311-316.	5.2	73
38	Transcriptional Activation of Metalloid Tolerance Genes inSaccharomyces cerevisiaeRequires the AP-1–like Proteins Yap1p and Yap8p. Molecular Biology of the Cell, 2004, 15, 2049-2060.	2.1	84
39	Arsenical resistance genes in and other yeast species undergo rapid evolution involving genomic rearrangements and duplications. FEMS Yeast Research, 2004, 4, 821-832.	2.3	22
40	Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p. Biochemical and Biophysical Research Communications, 2003, 304, 293-300.	2.1	51
41	Different Sensitivities of Mutants and Chimeric Forms of Human Muscle and Liver Fructose-1,6-Bisphosphatases towards AMP. Biological Chemistry, 2003, 384, 51-58.	2.5	23
42	Yap1 overproduction restores arsenite resistance to the ABC transporter deficient mutant ycf1 by activating ACR3 expression. Biochemistry and Cell Biology, 2001, 79, 441-448.	2.0	19
43	Mechanisms involved in metalloid transport and tolerance acquisition. Current Genetics, 2001, 40, 2-12.	1.7	65
44	The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Molecular Microbiology, 2001, 40, 1391-1401.	2.5	306
45	Yap1 overproduction restores arsenite resistance to the ABC transporter deficient mutant <i>ycf1</i> by activating <i>ACR3</i> expression. Biochemistry and Cell Biology, 2001, 79, 441-448.	2.0	3
46	Systematic disruption of 456 ORFs in the yeastSaccharomyces cerevisiae. Yeast, 2000, 16, 547-552.	1.7	16
47	Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 1999, 285, 901-906.	12.6	3,761
48	Mass-murdering: deletion of twenty-three ORFs from Saccharomyces cerevisiae chromosome XI reveals five genes essential for growth and three genes conferring detectable mutant phenotype. Gene, 1999, 229, 37-45.	2.2	5
49	The Saccharomyces cerevisiae ACR3 Gene Encodes a Putative Membrane Protein Involved in Arsenite Transport. Journal of Biological Chemistry, 1997, 272, 30061-30066.	3.4	223
50	Isolation of Three Contiguous Genes, ACR1, ACR2 and ACR3, Involved in Resistance to Arsenic Compounds in the Yeast Saccharomyces cerevisiae., 1997, 13, 819-828.		211