Yogesh Kulathu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3963334/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deubiquitinases: From mechanisms to their inhibition by small molecules. Molecular Cell, 2022, 82, 15-29.	9.7	98
2	Chemical biology tools to study Deubiquitinases and Ubl proteases. Seminars in Cell and Developmental Biology, 2022, 132, 86-96.	5.0	7
3	Purification, crystallization and drug screening of the IRAK pseudokinases. Methods in Enzymology, 2022, 667, 101-121.	1.0	0
4	Dimeric Structure of the Pseudokinase IRAK3 Suggests an Allosteric Mechanism for Negative Regulation. Structure, 2021, 29, 238-251.e4.	3.3	22
5	Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp3 papain-like protease. Biochemical Journal, 2021, 478, 2517-2531.	3.7	49
6	Linking K29-Ub chains to biology. Nature Chemical Biology, 2021, 17, 843-844.	8.0	1
7	Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition by nanobodies. PLoS ONE, 2021, 16, e0253364.	2.5	55
8	UFMylation of MRE11 is essential for telomere length maintenance and hematopoietic stem cell survival. Science Advances, 2021, 7, eabc7371.	10.3	23
9	Mechanism of activation and regulation of deubiquitinase activity in MINDY1 and MINDY2. Molecular Cell, 2021, 81, 4176-4190.e6.	9.7	18
10	Coupled monoubiquitylation of the co-E3 ligase DCNL1 by Ariadne-RBR E3 ubiquitin ligases promotes cullin-RING ligase complex remodeling. Journal of Biological Chemistry, 2019, 294, 2651-5314.	3.4	13
11	Synthetic biology of B cell activation: understanding signal amplification at the B cell antigen receptor using a rebuilding approach. Biological Chemistry, 2019, 400, 555-563.	2.5	4
12	Expansion of DUB functionality by alternative isoforms: USP35, a case study. Journal of Cell Science, 2018, 131, .	2.0	34
13	Discovery and Characterization of ZUFSP/ZUP1, a Distinct Deubiquitinase Class Important for Genome Stability. Molecular Cell, 2018, 70, 150-164.e6.	9.7	142
14	A single <scp>MIU</scp> motif of <scp>MINDY</scp> â€1 recognizes K48â€linked polyubiquitin chains. EMBO Reports, 2017, 18, 392-402.	4.5	51
15	PLAA Mutations Cause a Lethal Infantile Epileptic Encephalopathy by Disrupting Ubiquitin-Mediated Endolysosomal Degradation of Synaptic Proteins. American Journal of Human Genetics, 2017, 100, 706-724.	6.2	37
16	Mechanisms of regulation and diversification of deubiquitylating enzyme function. Journal of Cell Science, 2017, 130, 1997-2006.	2.0	76
17	Molecular basis of Lys11-polyubiquitin specificity in the deubiquitinase Cezanne. Nature, 2016, 538, 402-405.	27.8	129
18	Synthesis of Isomeric Phosphoubiquitin Chains Reveals that Phosphorylation Controls Deubiquitinase Activity and Specificity. Cell Reports, 2016, 16, 1180-1193.	6.4	52

Yogesh Kulathu

#	Article	IF	CITATIONS
19	MINDY-1 Is a Member of an Evolutionarily Conserved and Structurally Distinct New Family of Deubiquitinating Enzymes. Molecular Cell, 2016, 63, 146-155.	9.7	297
20	Novel Diubiquitin Probes Expand the Chemical Toolkit to Study DUBs. Cell Chemical Biology, 2016, 23, 432-434.	5.2	1
21	K29-Selective Ubiquitin Binding Domain Reveals Structural Basis of Specificity and Heterotypic Nature of K29 Polyubiquitin. Molecular Cell, 2015, 58, 83-94.	9.7	136
22	Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations. Biochemical Journal, 2015, 467, 345-352.	3.7	67
23	OTU Deubiquitinases Reveal Mechanisms of Linkage Specificity and Enable Ubiquitin Chain Restriction Analysis. Cell, 2013, 154, 169-184.	28.9	470
24	Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nature Communications, 2013, 4, 1569.	12.8	120
25	Security measures of a master regulator. Nature, 2013, 497, 193-194.	27.8	3
26	On Terminal Alkynes That Can React with Active-Site Cysteine Nucleophiles in Proteases. Journal of the American Chemical Society, 2013, 135, 2867-2870.	13.7	290
27	OTULIN Antagonizes LUBAC Signaling by Specifically Hydrolyzing Met1-Linked Polyubiquitin. Cell, 2013, 153, 1312-1326.	28.9	395
28	Atypical ubiquitylation — the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nature Reviews Molecular Cell Biology, 2012, 13, 508-523.	37.0	558
29	Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nature Structural and Molecular Biology, 2009, 16, 1328-1330.	8.2	177
30	Autoinhibition and adapter function of Syk. Immunological Reviews, 2009, 232, 286-299.	6.0	71
31	The kinase Syk as an adaptor controlling sustained calcium signalling and B-cell development. EMBO Journal, 2008, 27, 1333-1344.	7.8	71
32	Two dimensional Blue Native-/SDS-PAGE analysis of SLP family adaptor protein complexes. Immunology Letters, 2006, 104, 131-137.	2.5	20
33	Deregulated Syk inhibits differentiation and induces growth factor–independent proliferation of pre–B cells. Journal of Experimental Medicine, 2006, 203, 2829-2840.	8.5	71
34	Deregulated Syk inhibits differentiation and induces growth factor–independent proliferation of pre–B cells. Journal of Cell Biology, 2006, 175, i14-i14.	5.2	0
35	A leucine zipper in the N terminus confers membrane association to SLP-65. Nature Immunology, 2005, 6, 204-210.	14.5	53