Patrick Braeutigam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3963315/publications.pdf

Version: 2024-02-01

840776 888059 21 549 11 17 citations h-index g-index papers 21 21 21 600 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Degradation of carbamazepine in environmentally relevant concentrations in water by Hydrodynamic-Acoustic-Cavitation (HAC). Water Research, 2012, 46, 2469-2477.	11.3	114
2	Degradation of endocrine disruptor bisphenol A by ultrasound-assisted electrochemical oxidation in water. Ultrasonics Sonochemistry, 2017, 39, 741-749.	8.2	70
3	Sonoelectrochemical degradation of triclosan in water. Ultrasonics Sonochemistry, 2014, 21, 2020-2025.	8.2	56
4	Sonoelectrochemical degradation of the anti-inflammatory drug diclofenac in water. Chemical Engineering Journal, 2015, 273, 214-222.	12.7	51
5	Sonoelectrochemical degradation of phenol in aqueous solutions. Ultrasonics Sonochemistry, 2013, 20, 715-721.	8.2	50
6	Enhancement of chloroform degradation by the combination of hydrodynamic and acoustic cavitation. Ultrasonics Sonochemistry, 2011, 18, 888-894.	8.2	47
7	Mechanochemical versus chemical routes for graphitic precursors and their performance in micropollutants removal in water. Powder Technology, 2020, 366, 629-640.	4.2	38
8	A sol-gel method for applying nanosized antibacterial particles to the surface of textile materials in an ultrasonic field. Ultrasonics Sonochemistry, 2020, 60, 104788.	8.2	29
9	A novel model for pyro-electro-catalytic hydrogen production in pure water. Physical Chemistry Chemical Physics, 2019, 21, 23009-23016.	2.8	17
10	The sorption behaviour of amine micropollutants on polyethylene microplastics $\hat{a} \in \text{``impact}$ of aging and interactions with green seaweed. Environmental Sciences: Processes and Impacts, 2020, 22, 1678-1687.	3.5	14
11	Hydrodynamic cavitation for micropollutant degradation in water – Correlation of bisphenol A degradation with fluid mechanical properties. Ultrasonics Sonochemistry, 2022, 83, 105950.	8.2	14
12	Pyrocatalytic oxidation – strong size-dependent poling effect on catalytic activity of pyroelectric BaTiO ₃ nano- and microparticles. Physical Chemistry Chemical Physics, 2020, 22, 23464-23473.	2.8	11
13	Sonochemical coating: Effect of energy input and distance on the functionalization of textiles with TiO2 and ZnO-Nanoparticles. Ultrasonics Sonochemistry, 2020, 60, 104801.	8.2	10
14	Influence of chemical structure of organic micropollutants on the degradability with ozonation. Water Research, 2022, 222, 118866.	11.3	9
15	Prediction of degradability of micropollutants by sonolysis in water with QSPR - a case study on phenol derivates. Ultrasonics Sonochemistry, 2022, 82, 105867.	8.2	8
16	Pyrocatalysisâ€"The DCF assay as a pH-robust tool to determine the oxidation capability of thermally excited pyroelectric powders. PLoS ONE, 2020, 15, e0228644.	2.5	7
17	Bisphenol A: Quantification in Complex Matrices and Removal by Anaerobic Sludges. Pollutants, 2021, 1, 194-206.	2.1	4
18	Title is missing!. , 2020, 15, e0228644.		0

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 15, e0228644.		O
20	Title is missing!. , 2020, 15, e0228644.		0
21	Title is missing!. , 2020, 15, e0228644.		O