John Kinuthia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3963185/publications.pdf Version: 2024-02-01

ΙΟΗΝ ΚΙΝΠΤΗΙΛ

#	Article	IF	CITATIONS
1	Effects of partial substitution of lime with ground granulated blast furnace slag (GCBS) on the strength properties of lime-stabilised sulphate-bearing clay soils. Engineering Geology, 1998, 51, 37-53.	6.3	193
2	Engineering properties of unfired clay masonry bricks. Engineering Geology, 2009, 107, 130-139.	6.3	172
3	Suppression of swelling associated with ettringite formation in lime stabilized sulphate bearing clay soils by partial substitution of lime with ground granulated blastfurnace slag (GGBS). Engineering Geology, 1999, 51, 257-277.	6.3	154
4	Effects of monovalent and divalent metal sulphates on consistency and compaction of lime-stabilised kaolinite. Applied Clay Science, 1999, 14, 27-45.	5.2	122
5	Effects of ground granulated blast furnace slag (GCBS) on the strength and swelling properties of lime-stabilized kaolinite in the presence of sulphates. Clay Minerals, 1996, 31, 423-433.	0.6	121
6	Compressive strength and hydration of wastepaper sludge ash–ground granulated blastfurnace slag blended pastes. Cement and Concrete Research, 2003, 33, 1189-1202.	11.0	117
7	Compressive strength and microstructural analysis of unfired clay masonry bricks. Engineering Geology, 2009, 109, 230-240.	6.3	94
8	Soil stabilisation with lime-activated-GCBS—A mitigation to flooding effects on road structural layers/embankments constructed on floodplains. Engineering Geology, 2012, 151, 112-119.	6.3	89
9	Stabilised unfired clay bricks for environmental and sustainable use. Applied Clay Science, 2012, 58, 52-59.	5.2	87
10	Sustainable soil stabilisation with blastfurnace slag – a review. Proceedings of Institution of Civil Engineers: Construction Materials, 2010, 163, 157-165.	1.1	80
11	Sustainable construction: Composite use of tyres and ash in concrete. Waste Management, 2009, 29, 360-367.	7.4	70
12	Enhancing the durability of flooded low-capacity soils by utilizing lime-activated ground granulated blastfurnace slag (GGBS). Engineering Geology, 2011, 123, 179-186.	6.3	67
13	The use of stabilised Spanish clay soil for sustainable construction materials. Engineering Geology, 2012, 133-134, 9-15.	6.3	61
14	Design thermal values for unfired clay bricks. Materials & Design, 2010, 31, 104-112.	5.1	59
15	Workability of concrete incorporating pulverized fuel ash and metakaolin. Magazine of Concrete Research, 1999, 51, 207-216.	2.0	57
16	An investigation into the strength development of Wastepaper Sludge Ash blended with Ground Granulated Blastfurnace Slag. Cement and Concrete Research, 2009, 39, 942-949.	11.0	54
17	Challenges in Life Cycle Assessment (LCA) of stabilised clay-based construction materials. Applied Clay Science, 2017, 144, 121-130.	5.2	53
18	Towards zero industrial waste: Utilisation of brick dust waste in sustainable construction. Waste Management, 2011, 31, 1867-1878.	7.4	48

JOHN ΚΙΝΙΤΗΙΑ

#	Article	IF	CITATIONS
19	Alumina filler waste as clay replacement material for unfired brick production. Engineering Geology, 2013, 163, 68-74.	6.3	48
20	Strength development in concrete incorporating PFA and metakaolin. Magazine of Concrete Research, 2000, 52, 153-162.	2.0	44
21	Effects of mellowing sulfate-bearing clay soil stabilized with wastepaper sludge ash for road construction. Engineering Geology, 2011, 117, 170-179.	6.3	44
22	Performance of sodium silicate free geopolymers from metakaolin (MK) and Rice Husk Ash (RHA): Effect on tensile strength and microstructure. Construction and Building Materials, 2018, 189, 307-313.	7.2	43
23	Self-compensating autogenous shrinkage in Portland cement—metakaolin—fly ash pastes. Advances in Cement Research, 2000, 12, 35-43.	1.6	42
24	The development of unfired clay building material using Brick Dust Waste and Mercia mudstone clay. Applied Clay Science, 2014, 102, 148-154.	5.2	37
25	Using slag for unfired-clay masonry-bricks. Proceedings of Institution of Civil Engineers: Construction Materials, 2008, 161, 147-155.	1.1	34
26	Utilisation of lime activated GGBS to reduce the deleterious effect of flooding on stabilised road structural materials: A laboratory simulation. Engineering Geology, 2011, 122, 334-338.	6.3	34
27	Using silica fume based activator in sustainable geopolymer binder for building application. Construction and Building Materials, 2021, 275, 122177.	7.2	34
28	Improving strength development of wastepaper sludge ash by wet-milling. Cement and Concrete Composites, 2006, 28, 144-152.	10.7	32
29	Improving hydraulic properties of lime–rice husk ash (RHA) binders with metakaolin (MK). Construction and Building Materials, 2011, 25, 2157-2161.	7.2	32
30	Developing unfired stabilised building materials in the UK. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2008, 161, 211-218.	0.7	30
31	Designed non-fired clay mixes for sustainable and low carbon use. Applied Clay Science, 2012, 59-60, 131-139.	5.2	30
32	Strength and environmental evaluation of stabilised Clay-PFA eco-friendly bricks. Construction and Building Materials, 2016, 125, 964-973.	7.2	28
33	Resistance of mortar containing unprocessed pulverised fuel ash (PFA) to sulphate attack. Cement and Concrete Composites, 2010, 32, 523-531.	10.7	25
34	Performance of interlocking laterite soil block walls under static loading. Construction and Building Materials, 2018, 171, 75-82.	7.2	22
35	SUSTAINABLE MEDIUM-STRENGTH CONCRETE (CS-CONCRETE) FROM COLLIERY SPOIL IN SOUTH WALES UK. Journal of Civil Engineering and Management, 2009, 15, 149-157.	3.5	21
36	Unfired clay bricks: from laboratory to industrial production. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2009, 162, 229-237.	0.7	15

JOHN ΚΙΝΙΤΗΙΑ

#	Article	IF	CITATIONS
37	MODERN BUILDING MATERIALS AND THEIR INVESTIGATION METHODS. Journal of Civil Engineering and Management, 2009, 15, 129-130.	3.5	10
38	Characterisation of an unprocessed landfill ash for application in concrete. Journal of Environmental Management, 2010, 91, 2117-2125.	7.8	10
39	Strength and Swell Performance of High-Sulphate Kaolinite Clay Soil. Sustainability, 2020, 12, 10164.	3.2	10
40	Engineering properties of concrete made with slate waste. Proceedings of Institution of Civil Engineers: Construction Materials, 2010, 163, 131-142.	1,1	8
41	Community-based resilience building: normative meets narrative in Mbale, 2010/2011. Environmental Hazards, 2013, 12, 47-59.	2.5	8
42	Gender-Specific Combination HIV Prevention for Youth in High-Burden Settings: The MP3 Youth Observational Pilot Study Protocol. JMIR Research Protocols, 2017, 6, e22.	1.0	8
43	Unfired clay masonry bricks incorporating slate waste. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 2010, 163, 17-27.	0.8	7
44	Compaction of fills involving stabilisation of expansive soils. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2011, 164, 113-126.	1.6	7
45	Sustainable masonry mortar for brick joint and plaster in the UK. Proceedings of Institution of Civil Engineers: Construction Materials, 2010, 163, 87-96.	1.1	6
46	Applications of slate waste material in the UK. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 2010, 163, 9-15.	0.8	3
47	Wastepaper sludge ash. , 2018, , 289-321.		3
48	Optimization of MgO-GGBS Cementitious Systems Using Thermo-Chemical Approaches. Sustainability, 2021, 13, 9378.	3.2	3
49	Effect of Immobilizing Bacillus megaterium on the Compressive Strength and Water Absorption of Mortar. Journal of Chemistry, 2022, 2022, 1-12.	1.9	3
50	Towards the Development of Smart Sensors to Prevent the Failure of Concrete Infrastructure Components. Journal of Failure Analysis and Prevention, 2017, 17, 621-623.	0.9	2
51	The Strength Characterisation of Concrete Made with Alumina Waste Filler. Sustainability, 2020, 12, 10235.	3.2	2
52	Suppression of Sulfate-Induced Expansion with Lime–Silica Fume Blends. Materials, 2022, 15, 2821.	2.9	2
53	Development of stabilised brick and mortar using biomass waste. Proceedings of Institution of Civil Engineers: Construction Materials, 2015, 168, 241-250.	1.1	1
54	Problems Encountered in the Life Cycle Assessment (LCA) of Recycled Materials in Construction. Lecture Notes in Civil Engineering, 2018, , 48-64.	0.4	0

#	Article	IF	CITATIONS
55	Properties of high-density silica fume-based gel and its potential use in high-temperature lubricants and geopolymer binders. Journal of Thermal Analysis and Calorimetry, 2022, 147, 7693-7699.	3.6	0
56	Effects of Lysinibacillus sphaericus on Physicomechanical and Chemical Performance of OPC Blended with Natural Tuff and Pulverized Fly Ash. Advances in Materials Science and Engineering, 2022, 2022, 1-15.	1.8	0