
de Berardinis Veronique

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3962974/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biocatalysed synthesis of chiral amines: continuous colorimetric assays for mining amine-transaminases. Catalysis Science and Technology, 2021, 11, 904-911.	4.1	5
2	Purification and Characterization of Nitphym, a Robust Thermostable Nitrilase From Paraburkholderia phymatum. Frontiers in Bioengineering and Biotechnology, 2021, 9, 686362.	4.1	5
3	Nitrilase immobilization and transposition from a microâ€scale batch to a continuous process increase the nicotinic acid productivity. Biotechnology Journal, 2021, 16, e2100010.	3.5	10
4	One Step Forward in Exploration of Class II Pyruvate Aldolases Nucleophile and Electrophile Substrate Specificity. ChemCatChem, 2021, 13, 3920-3924.	3.7	3
5	Pyruvate Aldolases Catalyze Cross-Aldol Reactions between Ketones: Highly Selective Access to Multi-Functionalized Tertiary Alcohols. ACS Catalysis, 2020, 10, 2538-2543.	11.2	13
6	Metagenomic Mining for Amine Dehydrogenase Discovery. Advanced Synthesis and Catalysis, 2020, 362, 2427-2436.	4.3	30
7	Tuning of the enzyme ratio in a neutral redox convergent cascade: A key approach for an efficient oneâ€pot/twoâ€step biocatalytic wholeâ€cell system. Biotechnology and Bioengineering, 2019, 116, 2852-2863.	3.3	13
8	Achiral Hydroxypyruvaldehyde Phosphate as a Platform for Multi-Aldolases Cascade Synthesis of Diuloses and for a Quadruple Acetaldehyde Addition Catalyzed by 2-Deoxyribose-5-Phosphate Aldolases. ACS Catalysis, 2019, 9, 9508-9512.	11.2	6
9	2-Deoxyribose-5-phosphate aldolase, a remarkably tolerant aldolase towards nucleophile substrates. Chemical Communications, 2019, 55, 7498-7501.	4.1	12
10	Discovery of new levansucrase enzymes with interesting properties and improved catalytic activity to produce levan and fructooligosaccharides. Catalysis Science and Technology, 2019, 9, 2931-2944.	4.1	27
11	Simplified in Vitro and in Vivo Bioaccess to Prenylated Compounds. ACS Omega, 2019, 4, 7838-7849.	3.5	14
12	A family of native amine dehydrogenases for the asymmetric reductive amination of ketones. Nature Catalysis, 2019, 2, 324-333.	34.4	87
13	Exploration of Aldol Reactions Catalyzed by Stereoselective Pyruvate Aldolases with 2â€Oxobutyric Acid as Nucleophile. Advanced Synthesis and Catalysis, 2019, 361, 2713-2717.	4.3	13
14	Exploring natural biodiversity to expand access to microbial terpene synthesis. Microbial Cell Factories, 2019, 18, 23.	4.0	22
15	Enantioselective Synthesis of <scp>d</scp> ―and <scp>l</scp> â€Î±â€Amino Acids by Enzymatic Transamination Using Glutamine as Smart Amine Donor. Advanced Synthesis and Catalysis, 2019, 361, 778-785.	4.3	9
16	Elucidation of the trigonelline degradation pathway reveals previously undescribed enzymes and metabolites. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4358-E4367.	7.1	37
17	Synthesis of Branchedâ€Chain Sugars with a DHAPâ€Dependent Aldolase: Ketones are Electrophile Substrates of Rhamnuloseâ€1â€phosphate Aldolases. Angewandte Chemie - International Edition, 2018, 57, 5467-5471.	13.8	23
18	Characterization of a thermotolerant ROK-type mannofructokinase from Streptococcus mitis: application to the synthesis of phosphorylated sugars. Applied Microbiology and Biotechnology, 2018, 102, 5569-5583.	3.6	5

#	Article	IF	CITATIONS
19	Continuous High-Throughput Colorimetric Assays for α-Transaminases. Methods in Molecular Biology, 2018, 1685, 233-245.	0.9	0
20	Stereoselective synthesis of γ-hydroxy-α-amino acids through aldolase–transaminase recycling cascades. Chemical Communications, 2017, 53, 5465-5468.	4.1	19
21	Biocatalytic Approaches towards the Synthesis of Chiral Amino Alcohols from Lysine: Cascade Reactions Combining alphaâ€Keto Acid Oxygenase Hydroxylation with Pyridoxal Phosphate―Dependent Decarboxylation. Advanced Synthesis and Catalysis, 2017, 359, 1563-1569.	4.3	20
22	Expanding the reaction space of aldolases using hydroxypyruvate as a nucleophilic substrate. Green Chemistry, 2017, 19, 519-526.	9.0	30
23	One-pot, two-step cascade synthesis of naturally rare <scp>l</scp> -erythro (3S,4S) ketoses by coupling a thermostable transaminase and transketolase. Green Chemistry, 2017, 19, 425-435.	9.0	26
24	Parallel evolution of non-homologous isofunctional enzymes in methionine biosynthesis. Nature Chemical Biology, 2017, 13, 858-866.	8.0	29
25	Asymmetric reductive amination by a wild-type amine dehydrogenase from the thermophilic bacteria Petrotoga mobilis. Catalysis Science and Technology, 2016, 6, 7421-7428.	4.1	54
26	Osmotic stress response in <i>Acinetobacter baylyi</i> : identification of a glycine–betaine biosynthesis pathway and regulation of osmoadaptive choline uptake and glycine–betaine synthesis through a cholineâ€responsive <scp>Betl</scp> repressor. Environmental Microbiology Reports, 2016, 8, 316-322.	2.4	49
27	Continuous colorimetric screening assays for the detection of specific l- or d-α-amino acid transaminases in enzyme libraries. Applied Microbiology and Biotechnology, 2016, 100, 397-408.	3.6	10
28	Design of Artificial Metabolisms in Layered Nanomaterials for the Enzymatic Synthesis of Phosphorylated Sugars. ChemCatChem, 2015, 7, 3110-3115.	3.7	19
29	Straightforward Synthesis of Terminally Phosphorylated <scp>L</scp> â€6ugars <i>via</i> Multienzymatic Cascade Reactions. Advanced Synthesis and Catalysis, 2015, 357, 1703-1708.	4.3	21
30	Genome Mining for Innovative Biocatalysts: New Dihydroxyacetone Aldolases for the Chemist's Toolbox. ChemCatChem, 2015, 7, 1871-1879.	3.7	23
31	Synthesis of Mono―and Dihydroxylated Amino Acids with New αâ€Ketoglutarateâ€Dependent Dioxygenases: Biocatalytic Oxidation of CH Bonds. ChemCatChem, 2014, 6, 3012-3017.	3.7	46
32	Revealing the hidden functional diversity of an enzyme family. Nature Chemical Biology, 2014, 10, 42-49.	8.0	113
33	Large α-aminonitrilase activity screening of nitrilase superfamily members: Access to conversion and enantiospecificity by LC–MS. Journal of Molecular Catalysis B: Enzymatic, 2014, 107, 79-88.	1.8	6
34	Thermostable Transketolase from <i>Geobacillus stearothermophilus:</i> Characterization and Catalysis, 2013, 355, 116-128.	4.3	35
35	Evolution study of the Baeyer–Villiger monooxygenases enzyme family: Functional importance of the highly conserved residues. Biochimie, 2013, 95, 1394-1402.	2.6	19
36	Nitrilase Activity Screening on Structurally Diverse Substrates: Providing Biocatalytic Tools for Organic Synthesis. Advanced Synthesis and Catalysis, 2013, 355, 1763-1779.	4.3	67

#	Article	IF	CITATIONS
37	Structure and Biosynthesis of Fimsbactins A–F, Siderophores from <i>Acinetobacter baumannii</i> and <i>Acinetobacter baylyi</i> . ChemBioChem, 2013, 14, 633-638.	2.6	72
38	Microbial urate catabolism: characterization of <scp>HpyO</scp> , a nonâ€homologous isofunctional isoform of the flavoprotein urate hydroxylase <scp>HpxO</scp> . Environmental Microbiology Reports, 2012, 4, 642-647.	2.4	11
39	Surface-associated motility, a common trait of clinical isolates of Acinetobacter baumannii, depends on 1,3-diaminopropane. International Journal of Medical Microbiology, 2012, 302, 117-128.	3.6	82
40	FSAB: A new fructose-6-phosphate aldolase from Escherichia coli. Cloning, over-expression and comparative kinetic characterization with FSAA. Journal of Molecular Catalysis B: Enzymatic, 2012, 84, 9-14.	1.8	14
41	Salt adaptation in Acinetobacter baylyi: identification and characterization of a secondary glycine betaine transporter. Archives of Microbiology, 2011, 193, 723-730.	2.2	28
42	Acinetobacter baylyi ADP1 as a model for metabolic system biology. Current Opinion in Microbiology, 2009, 12, 568-576.	5.1	47
43	New Insights into the Alternative d-Glucarate Degradation Pathway. Journal of Biological Chemistry, 2008, 283, 15638-15646.	3.4	29
44	A complete collection of singleâ€gene deletion mutants of <i>Acinetobacter baylyi</i> ADP1. Molecular Systems Biology, 2008, 4, 174.	7.2	289
45	Numerous Novel Annotations of the Human Genome Sequence Supported by a 5'-End-Enriched cDNA Collection. Genome Research, 2004, 14, 463-471.	5.5	15
46	Finishing the euchromatic sequence of the human genome. Nature, 2004, 431, 931-945.	27.8	4,232
47	Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature, 2004, 431, 946-957.	27.8	1,801
48	The DNA sequence and analysis of human chromosome 14. Nature, 2003, 421, 601-607.	27.8	108
49	The Genome Sequence of the Malaria Mosquito <i>Anopheles gambiae</i> . Science, 2002, 298, 129-149.	12.6	1,859
50	Human Epoxide Hydrolase is the Target of Germander Autoantibodies on the Surface of Human Hepatocytes: Enzymatic Implications. Advances in Experimental Medicine and Biology, 2001, 500, 121-124.	1.6	11
51	Human Microsomal Epoxide Hydrolase Is the Target of Germander-Induced Autoantibodies on the Surface of Human Hepatocytes. Molecular Pharmacology, 2000, 58, 542-551.	2.3	86