Junko Fujita-Yoshigaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3962123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Switching of cargo sorting from the constitutive to regulated secretory pathway by the addition of cystatin D sequence in salivary acinar cells. American Journal of Physiology - Renal Physiology, 2020, 319, G74-G86.	3.4	0
2	Suppression of parotid acinar cell dysfunction by the free radical scavenger 3-methyl-1-phenyl-2-pyrazolin-5-one. Journal of Oral Science, 2019, 61, 475-480.	1.7	2
3	Change in Expression Patterns of Micro RNAs in the Primary Culture of Parotid Acinar Cells. International Journal of Oral-Medical Sciences, 2019, 17, 120-128.	0.1	0
4	Maintenance of claudin-3 expression and the barrier functions of intercellular junctions in parotid acinar cells via the inhibition of Src signaling. Archives of Oral Biology, 2017, 81, 141-150.	1.8	11
5	Determinants for selective transport of exogenously expressed cargo proteins into regulated and constitutive secretory pathways. Journal of Oral Biosciences, 2017, 59, 87-91.	2.2	2
6	Expression of the Stem Cell Marker Nestin in Response to Tissue Injuries of Parotid Acinar Cells . International Journal of Oral-Medical Sciences, 2017, 15, 93-97.	0.1	1
7	Syntaxin 6 is Involved in the Maintenance of Secretory Granules in Parotid Acinar Cells . International Journal of Oral-Medical Sciences, 2017, 15, 67-73.	0.1	1
8	MC3T3-E1 Cell Assay on Collagen or Fibronectin Immobilized Poly (Lactic Acid-ε-Caprolactone) Film. Journal of Hard Tissue Biology, 2015, 24, 249-256.	0.4	4
9	Secretory proteins without a transport signal are retained in secretory granules during maturation in rat parotid acinar cells. Archives of Oral Biology, 2015, 60, 642-649.	1.8	4
10	The sorting mechanism underlying the separation of salivary proteins into secretory granules in parotid glands. Journal of Oral Biosciences, 2014, 56, 97-100.	2.2	4
11	Involvement of AQP6 in the Mercury-Sensitive Osmotic Lysis of Rat Parotid Secretory Granules. Journal of Membrane Biology, 2013, 246, 209-214.	2.1	10
12	Sorting of a HaloTag protein that has only a signal peptide sequence into exocrine secretory granules without protein aggregation. American Journal of Physiology - Renal Physiology, 2013, 305, G685-G696.	3.4	9
13	Effects of [6]-Gingerol on Dedifferentiation of Salivary Acinar Cells. International Journal of Oral-Medical Sciences, 2013, 11, 315-319.	0.1	1
14	The actin-specific reagent jasplakinolide induces apoptosis in primary rat parotid acinar cells. Archives of Oral Biology, 2012, 57, 567-576.	1.8	7
15	Role of Aquaporin-6 in Rat Parotid Secretory Granules. Journal of Oral Biosciences, 2011, 53, 312-317.	2.2	1
16	Analysis of Changes in the Expression Pattern of Claudins Using Salivary Acinar Cells in Primary Culture. Methods in Molecular Biology, 2011, 762, 245-258.	0.9	9
17	Characteristics of neurokinin A-induced salivary fluid secretion in perfused rat submandibular gland. Archives of Oral Biology, 2010, 55, 737-744.	1.8	8
18	Maintenance of paracellular barrier function by insulin-like growth factor-I in submandibular gland cells. Archives of Oral Biology, 2010, 55, 963-969.	1.8	19

Junko Fujita-Yoshigaki

#	Article	IF	CITATIONS
19	Thiol-oxidation reduces the release of amylase induced by β-adrenergic receptor activation in rat parotid acinar cells. Biomedical Research, 2010, 31, 293-299.	0.9	4
20	Plasticity in Differentiation of Salivary Glands: The Signaling Pathway That Induces Dedifferentiation of Parotid Acinar Cells. Journal of Oral Biosciences, 2010, 52, 65-71.	2.2	3
21	Parotid acinar cells transiently change to duct-like cells during epithelial-mesenchymal transition. Journal of Medical Investigation, 2009, 56, 258-259.	0.5	8
22	Phosphorylation of myristoylated alanine-rich C kinase substrate is involved in the cAMP-dependent amylase release in parotid acinar cells. American Journal of Physiology - Renal Physiology, 2009, 296, G1382-G1390.	3.4	21
23	RP-HPLC-ESI-MS characterization of novel peptide fragments related to rat parotid secretory protein in parasympathetic induced saliva. Journal of Separation Science, 2009, 32, 2944-2952.	2.5	7
24	Role of protein kinase CDELTA. in isoproterenol-induced amylase release in rat parotid acinar cells. Journal of Medical Investigation, 2009, 56, 368-370.	0.5	1
25	The thiol-oxidizing agent diamide reduces isoproterenol-stimulated amylase release in rat parotid acinar cells. Journal of Medical Investigation, 2009, 56, 284-286.	0.5	0
26	Separation of immature granules containing color dye from the rat parotid gland. Journal of Medical Investigation, 2009, 56, 391-392.	0.5	0
27	Presence and localization of aquaporin-6 in rat parotid acinar cells. Cell and Tissue Research, 2008, 332, 73-80.	2.9	25
28	Enhancement of barrier function by overexpression of claudin-4 in tight junctions of submandibular gland cells. Cell and Tissue Research, 2008, 334, 255-264.	2.9	52
29	Inhibition of Src and p38 MAP kinases suppresses the change of claudin expression induced on dedifferentiation of primary cultured parotid acinar cells. American Journal of Physiology - Cell Physiology, 2008, 294, C774-C785.	4.6	32
30	Syntaxin6 separates from GM1a-rich membrane microdomain during granule maturation. Biochemical and Biophysical Research Communications, 2007, 357, 1071-1077.	2.1	14
31	Differences in claudin synthesis in primary cultures of acinar cells from rat salivary gland are correlated with the specific three-dimensional organization of the cells. Cell and Tissue Research, 2007, 329, 59-70.	2.9	19
32	Difference in distribution of membrane proteins between low- and high-density secretory granules in parotid acinar cells. Biochemical and Biophysical Research Communications, 2006, 344, 283-292.	2.1	17
33	Involvement of Aquaporin-5 Water Channel in Osmoregulation in Parotid Secretory Granules. Journal of Membrane Biology, 2005, 203, 119-126.	2.1	42
34	A primary culture of parotid acinar cells retaining capacity for agonists-induced amylase secretion and generation of new secretory granules. Cell and Tissue Research, 2005, 320, 455-464.	2.9	31
35	Phosphodiesterases 1 and 2 regulate cellular cGMP level in rabbit submandibular gland cells. International Journal of Biochemistry and Cell Biology, 2005, 37, 876-886.	2.8	2
36	Involvement of phospholipase D in the cAMP-regulated exocytosis of rat parotid acinar cells. Biochemical and Biophysical Research Communications, 2002, 299, 663-668.	2.1	24

Junko Fujita-Yoshigaki

#	Article	IF	CITATIONS
37	Cyclic AMP has distinct effects from Ca 2+ in evoking priming and fusion/exocytosis in parotid amylase secretion. Pflugers Archiv European Journal of Physiology, 2002, 444, 586-596.	2.8	22
38	Complex Gangliosides as Cell Surface Inhibitors for the Ecto-NAD+Glycohydrolase of CD38â€. Biochemistry, 2001, 40, 888-895.	2.5	19
39	Association of Fc ^î ³RII with Low-Density Detergent-Resistant Membranes Is Important for Cross-Linking-Dependent Initiation of the Tyrosine Phosphorylation Pathway and Superoxide Generation. Journal of Immunology, 2001, 167, 5814-5823.	0.8	61
40	Simulation of Regulated Exocytosis of Amylase from Salivary Parotid Acinar Cells by a Consecutive Reaction Model Comprising Two Sequential First-order Reactions. Journal of Theoretical Biology, 2000, 204, 165-177.	1.7	10
41	Presence of a Complex Containing Vesicle-associated Membrane Protein 2 in Rat Parotid Acinar Cells and Its Disassembly upon Activation of cAMP-dependent Protein Kinase. Journal of Biological Chemistry, 1999, 274, 23642-23646.	3.4	45
42	cGMP production is coupled to Ca2+-dependent nitric oxide generation in rabbit parotid acinar cells. Cell Calcium, 1998, 23, 405-412.	2.4	15
43	Divergence and Convergence in Regulated Exocytosis. Cellular Signalling, 1998, 10, 371-375.	3.6	48
44	Translocation of Arf1 to the Secretory Granules in Rat Parotid Acinar Cells. Archives of Biochemistry and Biophysics, 1998, 357, 147-154.	3.0	21
45	Vesicle-associated Membrane Protein 2 Is Essential for cAMP-regulated Exocytosis in Rat Parotid Acinar Cells. Journal of Biological Chemistry, 1996, 271, 13130-13134.	3.4	75
46	A Constitutive Effector Region on the C-terminal Side of Switch I of the Ras Protein. Journal of Biological Chemistry, 1995, 270, 4661-4667.	3.4	24
47	Site-directed mutagenesis, fluorescence, and two-dimensional NMR studies on microenvironments of effector region aromatic residues of human c-Ha-Ras protein. Biochemistry, 1994, 33, 65-73.	2.5	36
48	c-Ha-Ras mutants with point mutations in Gln-Val-Val region have reduced inhibitory activity toward cathepsin B. Cancer Letters, 1993, 69, 161-165.	7.2	20
49	Guanine-nucleotide binding activity, interaction with GTPase-activating protein and solution conformation of the human c-Ha-Ras protein catalytic domain are retained upon deletion of C-terminal 18 amino acid residues. The Protein Journal, 1992, 11, 731-739.	1.1	8
50	Identification of amino acid residues of Ras protein that are essential for signal-transducing activity but not for enhancement of GTPase activity by GAP. FEBS Letters, 1991, 294, 187-190.	2.8	13