
Jesper Pallesen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3961402/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induction of tier-2 neutralizing antibodies in mice with a DNA-encoded HIV envelope native like trimer. Nature Communications, 2022, 13, 695.	12.8	2
2	Differences in the Binding Affinity of an HIV-1 V2 Apex-Specific Antibody for the SIV _{smm/mac} Envelope Glycoprotein Uncouple Antibody-Dependent Cellular Cytotoxicity from Neutralization. MBio, 2019, 10, .	4.1	18
3	Human monoclonal antibodies against chikungunya virus target multiple distinct epitopes in the E1 and E2 glycoproteins. PLoS Pathogens, 2019, 15, e1008061.	4.7	35
4	Structural Definition of a Neutralization-Sensitive Epitope on the MERS-CoV S1-NTD. Cell Reports, 2019, 28, 3395-3405.e6.	6.4	63
5	Potent anti-influenza H7 human monoclonal antibody induces separation of hemagglutinin receptor-binding head domains. PLoS Biology, 2019, 17, e3000139.	5.6	37
6	The Chimpanzee SIV Envelope Trimer: Structure and Deployment as an HIV Vaccine Template. Cell Reports, 2019, 27, 2426-2441.e6.	6.4	35
7	Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Scientific Reports, 2018, 8, 15701.	3.3	408
8	Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin. Science, 2018, 362, 598-602.	12.6	170
9	Structure of a cleavage-independent HIV Env recapitulates the glycoprotein architecture of the native cleaved trimer. Nature Communications, 2018, 9, 1956.	12.8	50
10	Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins. PLoS Pathogens, 2018, 14, e1006986.	4.7	28
11	Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell, 2018, 174, 938-952.e13.	28.9	173
12	Structure of the human volume regulated anion channel. ELife, 2018, 7, .	6.0	91
13	Trajectories of the ribosome as a Brownian nanomachine. journal of hand surgery Asian-Pacific volume, The, 2018, , 463-475.	0.4	2
14	Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7348-E7357.	7.1	944
15	Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature, 2017, 547, 360-363.	27.8	217
16	An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nature Microbiology, 2017, 2, 16199.	13.3	144
17	Pre-fusion structure of a human coronavirus spike protein. Nature, 2016, 531, 118-121.	27.8	623
18	Structures of Ebola virus GP and sGP in complex with therapeutic antibodies. Nature Microbiology, 2016, 1, 16128.	13.3	92

JESPER PALLESEN

#	Article	IF	CITATIONS
19	Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site. Cell Reports, 2016, 15, 1514-1526.	6.4	80
20	Trajectories of the ribosome as a Brownian nanomachine. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17492-17497.	7.1	218
21	Automated particle picking for low-contrast macromolecules in cryo-electron microscopy. Journal of Structural Biology, 2014, 186, 1-7.	2.8	52
22	Fully Automated Particle Selection and Verification in Single-Particle Cryo-EM. Applied and Numerical Harmonic Analysis, 2014, , 43-66.	0.3	1
23	Affinity grid-based cryo-EM of PKC binding to RACK1 on the ribosome. Journal of Structural Biology, 2013, 181, 190-194.	2.8	30
24	Cryo-EM visualization of the ribosome in termination complex with apo-RF3 and RF1. ELife, 2013, 2, e00411.	6.0	31
25	Structure of the HIV-1 5′ Untranslated Region Dimer Alone and in Complex with Gold Nanocolloids: Support of a TAR–TAR-Containing 5′ Dimer Linkage Site (DLS) and a 3′ DIS–DIS-Containing DLS. Biochemistry, 2011, 50, 6170-6177.	2.5	8
26	Reference-free particle selection enhanced with semi-supervised machine learning for cryo-electron microscopy. Journal of Structural Biology, 2011, 175, 353-361.	2.8	24
27	Characterization of the nuclear export adaptor protein Nmd3 in association with the 60S ribosomal subunit. Journal of Cell Biology, 2010, 189, 1079-1086.	5.2	58
28	Structure of the HIVâ€1 Rev response element alone and in complex with regulator of virion (Rev) studied by atomic force microscopy. FEBS Journal, 2009, 276, 4223-4232.	4.7	24