
## **Guocheng Du**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3961003/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microbial Cell<br>Factories, 2011, 10, 99.                                                                               | 4.0  | 288       |
| 2  | Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects. Biotechnology Advances, 2015, 33, 830-841.                | 11.7 | 185       |
| 3  | Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metabolic Engineering, 2018, 50, 109-121.                                                     | 7.0  | 163       |
| 4  | Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis. Microbial Cell Factories, 2019, 18, 1.      | 4.0  | 163       |
| 5  | Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Scientific Reports, 2015, 5, 13477.                          | 3.3  | 145       |
| 6  | Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production.<br>Metabolic Engineering, 2014, 23, 42-52.                                                                       | 7.0  | 130       |
| 7  | Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Applied Microbiology and Biotechnology, 2017, 101, 3991-4008.                                             | 3.6  | 117       |
| 8  | Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces<br>cerevisiae. Microbiology and Molecular Biology Reviews, 2018, 82, .                                              | 6.6  | 117       |
| 9  | Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous<br>dual-control of metabolic flux in Bacillus subtilis. Nucleic Acids Research, 2020, 48, 996-1009.                     | 14.5 | 111       |
| 10 | Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168.<br>Metabolic Engineering, 2016, 35, 21-30.                                                               | 7.0  | 109       |
| 11 | Pyruvate-responsive genetic circuits for dynamic control of central metabolism. Nature Chemical<br>Biology, 2020, 16, 1261-1268.                                                                               | 8.0  | 94        |
| 12 | Fate of antibiotics, antibiotic-resistant bacteria, and cell-free antibiotic-resistant genes in full-scale<br>membrane bioreactor wastewater treatment plants. Bioresource Technology, 2020, 302, 122825.      | 9.6  | 94        |
| 13 | Characterization and application of endogenous phase-dependent promoters in Bacillus subtilis.<br>Applied Microbiology and Biotechnology, 2017, 101, 4151-4161.                                                | 3.6  | 92        |
| 14 | Engineering a Bifunctional Phr60-Rap60-Spo0A Quorum-Sensing Molecular Switch for Dynamic<br>Fine-Tuning of Menaquinone-7 Synthesis in <i>Bacillus subtilis</i> . ACS Synthetic Biology, 2019, 8,<br>1826-1837. | 3.8  | 87        |
| 15 | Microbial Chassis Development for Natural Product Biosynthesis. Trends in Biotechnology, 2020, 38,<br>779-796.                                                                                                 | 9.3  | 84        |
| 16 | Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Scientific Reports, 2015, 5, 8584.                                                              | 3.3  | 83        |
| 17 | CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis. Metabolic Engineering, 2018, 49, 232-241.        | 7.0  | 83        |
| 18 | Synthetic Biology Toolbox and Chassis Development in Bacillus subtilis. Trends in Biotechnology,<br>2019, 37, 548-562.                                                                                         | 9.3  | 81        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Coupling feedback genetic circuits with growth phenotype for dynamic population control and intelligent bioproduction. Metabolic Engineering, 2019, 54, 109-116.                                                                      | 7.0  | 79        |
| 20 | Modular Optimization of Heterologous Pathways for De Novo Synthesis of (2S)-Naringenin in<br>Escherichia coli. PLoS ONE, 2014, 9, e101492.                                                                                            | 2.5  | 78        |
| 21 | Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered<br>Bacillus subtilis. Carbohydrate Polymers, 2016, 140, 424-432.                                                                      | 10.2 | 78        |
| 22 | Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain<br>engineering for improved N-acetylglucosamine production by Bacillus subtilis. Metabolic Engineering,<br>2014, 24, 61-69.             | 7.0  | 77        |
| 23 | Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine. Metabolic<br>Engineering, 2013, 19, 107-115.                                                                                                | 7.0  | 76        |
| 24 | Obtaining a Panel of Cascade Promoter-5′-UTR Complexes in <i>Escherichia coli</i> . ACS Synthetic<br>Biology, 2017, 6, 1065-1075.                                                                                                     | 3.8  | 74        |
| 25 | Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate. Journal of Biotechnology, 2017, 253, 1-9.                                                      | 3.8  | 74        |
| 26 | Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future<br>directions. Biotechnology Advances, 2017, 35, 20-30.                                                                              | 11.7 | 74        |
| 27 | Keratinolytic protease: a green biocatalyst for leather industry. Applied Microbiology and Biotechnology, 2017, 101, 7771-7779.                                                                                                       | 3.6  | 72        |
| 28 | Piggery wastewater treatment by aerobic granular sludge: Granulation process and antibiotics and antibiotics and antibiotic-resistant bacteria removal and transport. Bioresource Technology, 2019, 273, 350-357.                     | 9.6  | 69        |
| 29 | Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-l-gulonic acid from d-sorbitol. Metabolic Engineering, 2014, 24, 30-37.                                                           | 7.0  | 68        |
| 30 | Fine-Tuning of the Fatty Acid Pathway by Synthetic Antisense RNA for Enhanced (2 <i>S</i> )-Naringenin<br>Production from <scp>I</scp> -Tyrosine in Escherichia coli. Applied and Environmental Microbiology,<br>2014, 80, 7283-7292. | 3.1  | 67        |
| 31 | Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis. Metabolic Engineering, 2019, 51, 59-69.                                                              | 7.0  | 66        |
| 32 | Recent advances in discovery, heterologous expression, and molecular engineering of cyclodextrin glycosyltransferase for versatile applications. Biotechnology Advances, 2014, 32, 415-428.                                           | 11.7 | 64        |
| 33 | Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B. subtilis WB600 through a combined strategy. Applied Microbiology and Biotechnology, 2017, 101, 1509-1520.                                        | 3.6  | 64        |
| 34 | Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnology Advances, 2020, 44, 107630.                                                                                                                  | 11.7 | 64        |
| 35 | Effective biodegradation of chicken feather waste by co-cultivation of keratinase producing strains.<br>Microbial Cell Factories, 2019, 18, 84.                                                                                       | 4.0  | 63        |
| 36 | Biotechnological production of alpha-keto acids: Current status and perspectives. Bioresource<br>Technology, 2016, 219, 716-724.                                                                                                      | 9.6  | 62        |

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Rational Design to Improve Protein Thermostability: Recent Advances and Prospects. ChemBioEng<br>Reviews, 2015, 2, 87-94.                                                                                                                              | 4.4  | 59        |
| 38 | Metabolic engineering of Escherichia coli BL21 (DE3) for de novo production of l-DOPA from d-glucose. Microbial Cell Factories, 2019, 18, 74.                                                                                                          | 4.0  | 59        |
| 39 | Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural<br>oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60.<br>Bioresource Technology, 2018, 247, 1184-1188.     | 9.6  | 58        |
| 40 | CAMERSâ€B: CRISPR/Cpf1 assisted multipleâ€genes editing and regulation system for <i>Bacillus subtilis</i> . Biotechnology and Bioengineering, 2020, 117, 1817-1825.                                                                                   | 3.3  | 58        |
| 41 | Protein and metabolic engineering for the production of organic acids. Bioresource Technology, 2017, 239, 412-421.                                                                                                                                     | 9.6  | 57        |
| 42 | Combining genetically-encoded biosensors with high throughput strain screening to maximize erythritol production in Yarrowia lipolytica. Metabolic Engineering, 2020, 60, 66-76.                                                                       | 7.0  | 57        |
| 43 | Engineering the Substrate Transport and Cofactor Regeneration Systems for Enhancing<br>2′-Fucosyllactose Synthesis in <i>Bacillus subtilis</i> . ACS Synthetic Biology, 2019, 8, 2418-2427.                                                            | 3.8  | 54        |
| 44 | Enhancement of α-ketoglutarate production in Torulopsis glabrata: Redistribution of carbon flux<br>from pyruvate to α-ketoglutarate. Biotechnology and Bioprocess Engineering, 2009, 14, 134-139.                                                      | 2.6  | 53        |
| 45 | Novel fermentation processes for manufacturing plant natural products. Current Opinion in Biotechnology, 2014, 25, 17-23.                                                                                                                              | 6.6  | 52        |
| 46 | High-level extracellular production of alkaline polygalacturonate lyase in Bacillus subtilis with optimized regulatory elements. Bioresource Technology, 2013, 146, 543-548.                                                                           | 9.6  | 51        |
| 47 | Evolutionary engineering of industrial microorganisms-strategies and applications. Applied Microbiology and Biotechnology, 2018, 102, 4615-4627.                                                                                                       | 3.6  | 51        |
| 48 | Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in<br>Escherichia coli. Bioresource Technology, 2019, 274, 353-360.                                                                                        | 9.6  | 51        |
| 49 | Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum. Nature Communications, 2020, 11, 3120.                                                                                | 12.8 | 51        |
| 50 | CRISPRi-Guided Multiplexed Fine-Tuning of Metabolic Flux for Enhanced Lacto- <i>N</i> -neotetraose<br>Production in <i>Bacillus subtilis</i> . Journal of Agricultural and Food Chemistry, 2020, 68,<br>2477-2484.                                     | 5.2  | 50        |
| 51 | Production of phenylpyruvic acid from l-phenylalanine using an l-amino acid deaminase from Proteus<br>mirabilis: comparison of enzymatic and whole-cell biotransformation approaches. Applied<br>Microbiology and Biotechnology, 2015, 99, 8391-8402.  | 3.6  | 49        |
| 52 | High-yield novel leech hyaluronidase to expedite the preparation of specific hyaluronan oligomers.<br>Scientific Reports, 2014, 4, 4471.                                                                                                               | 3.3  | 49        |
| 53 | Current challenges facing one-step production of l-ascorbic acid. Biotechnology Advances, 2018, 36, 1882-1899.                                                                                                                                         | 11.7 | 49        |
| 54 | Engineering a Glucosamine-6-phosphate Responsive <i>glmS</i> Ribozyme Switch Enables Dynamic<br>Control of Metabolic Flux in <i>Bacillus subtilis</i> for Overproduction of<br><i>N</i> -Acetylglucosamine. ACS Synthetic Biology, 2018, 7, 2423-2435. | 3.8  | 49        |

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | P <i>gas</i> , a Low-pH-Induced Promoter, as a Tool for Dynamic Control of Gene Expression for<br>Metabolic Engineering of Aspergillus niger. Applied and Environmental Microbiology, 2017, 83, .                                                      | 3.1  | 48        |
| 56 | Synthetic N-terminal coding sequences for fine-tuning gene expression and metabolic engineering in Bacillus subtilis. Metabolic Engineering, 2019, 55, 131-141.                                                                                        | 7.0  | 48        |
| 57 | Microbial production of sialic acid and sialylated human milk oligosaccharides: Advances and perspectives. Biotechnology Advances, 2019, 37, 787-800.                                                                                                  | 11.7 | 48        |
| 58 | Bio-Based Strategies for Producing Glycosaminoglycans and Their Oligosaccharides. Trends in<br>Biotechnology, 2018, 36, 806-818.                                                                                                                       | 9.3  | 47        |
| 59 | Keratin Waste Recycling Based on Microbial Degradation: Mechanisms and Prospects. ACS Sustainable<br>Chemistry and Engineering, 2019, 7, 9727-9736.                                                                                                    | 6.7  | 47        |
| 60 | Recent advances in production of 5-aminolevulinic acid using biological strategies. World Journal of<br>Microbiology and Biotechnology, 2017, 33, 200.                                                                                                 | 3.6  | 46        |
| 61 | Construction and Characterization of Broad-Spectrum Promoters for Synthetic Biology. ACS<br>Synthetic Biology, 2018, 7, 287-291.                                                                                                                       | 3.8  | 46        |
| 62 | Improved Production of Propionic Acid in Propionibacterium jensenii via Combinational<br>Overexpression of Glycerol Dehydrogenase and Malate Dehydrogenase from Klebsiella pneumoniae.<br>Applied and Environmental Microbiology, 2015, 81, 2256-2264. | 3.1  | 45        |
| 63 | A dynamic pathway analysis approach reveals a limiting futile cycle in N-acetylglucosamine overproducing Bacillus subtilis. Nature Communications, 2016, 7, 11933.                                                                                     | 12.8 | 45        |
| 64 | Significantly improving the yield of recombinant proteins in Bacillus subtilis by a novel powerful<br>mutagenesis tool (ARTP): Alkaline α-amylase as a case study. Protein Expression and Purification, 2015,<br>114, 82-88.                           | 1.3  | 44        |
| 65 | Enhancement of the catalytic efficiency and thermostability of<br><scp><i>S</i></scp> <i>tenotrophomonas</i> sp. keratinase <scp>KerSMD</scp> by domain exchange<br>with <scp>KerSMF</scp> . Microbial Biotechnology, 2016, 9, 35-46.                  | 4.2  | 44        |
| 66 | Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved<br>N-acetyl-glucosamine production. Bioresource Technology, 2018, 250, 642-649.                                                                                  | 9.6  | 44        |
| 67 | Application of response surface methodology in medium optimization for spore production of<br>Coniothyrium minitans in solid-state fermentation. World Journal of Microbiology and<br>Biotechnology, 2005, 21, 593-599.                                | 3.6  | 43        |
| 68 | Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic<br>Acid from 5-Hydroxymethylfurfural. Applied and Environmental Microbiology, 2017, 83, .                                                             | 3.1  | 43        |
| 69 | Synergistic improvement of N-acetylglucosamine production by engineering transcription factors and balancing redox cofactors. Metabolic Engineering, 2021, 67, 330-346.                                                                                | 7.0  | 43        |
| 70 | Comparative genomics and transcriptome analysis of Aspergillus niger and metabolic engineering for citrate production. Scientific Reports, 2017, 7, 41040.                                                                                             | 3.3  | 43        |
| 71 | Bioconversion of l-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst<br>expressing l-amino acid deaminase from Proteus mirabilis. Journal of Biotechnology, 2014, 169, 112-120.                                            | 3.8  | 42        |
| 72 | Spatial organization of silybin biosynthesis in milk thistle [ <i>Silybum marianum</i> (L.) Gaertn]. Plant<br>Journal, 2017, 92, 995-1004.                                                                                                             | 5.7  | 41        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Characterization of a Lactobacillus brevis strain with potential oral probiotic properties. BMC<br>Microbiology, 2018, 18, 221.                                                                                                | 3.3  | 41        |
| 74 | Biotransformation of keratin waste to amino acids and active peptides based on cell-free catalysis.<br>Biotechnology for Biofuels, 2020, 13, 61.                                                                               | 6.2  | 41        |
| 75 | Isolation and Culture Characterization of a New Polyvinyl Alcohol-Degrading Strain: Penicillium sp.<br>WSH02-21. World Journal of Microbiology and Biotechnology, 2004, 20, 587-591.                                           | 3.6  | 40        |
| 76 | Production of glucaric acid from myo-inositol in engineered Pichia pastoris. Enzyme and Microbial<br>Technology, 2016, 91, 8-16.                                                                                               | 3.2  | 40        |
| 77 | 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in<br><i>Escherichia coli</i> . Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1127-1135.                             | 3.0  | 40        |
| 78 | Bioprocessing technology of muscle stem cells: implications for cultured meat. Trends in Biotechnology, 2022, 40, 721-734.                                                                                                     | 9.3  | 40        |
| 79 | Improved propionic acid production from glycerol with metabolically engineered Propionibacterium<br>jensenii by integrating fed-batch culture with a pH-shift control strategy. Bioresource Technology,<br>2014, 152, 519-525. | 9.6  | 39        |
| 80 | Systems metabolic engineering of microorganisms to achieve large-scale production of flavonoid scaffolds. Journal of Biotechnology, 2014, 188, 72-80.                                                                          | 3.8  | 39        |
| 81 | Enhanced acid-stress tolerance in Lactococcus lactis NZ9000 by overexpression of ABC transporters.<br>Microbial Cell Factories, 2019, 18, 136.                                                                                 | 4.0  | 39        |
| 82 | Molecular engineering of chitinase from Bacillus sp. DAU101 for enzymatic production of chitooligosaccharides. Enzyme and Microbial Technology, 2019, 124, 54-62.                                                              | 3.2  | 39        |
| 83 | Enhanced production of L-sorbose from D-sorbitol by improving the mRNA abundance of sorbitol dehydrogenase in Gluconobacter oxydansWSH-003. Microbial Cell Factories, 2014, 13, 146.                                           | 4.0  | 38        |
| 84 | Metabolic engineering of cofactor flavin adenine dinucleotide (FAD) synthesis and regeneration in<br><i>Escherichia coli</i> for production of αâ€keto acids. Biotechnology and Bioengineering, 2017, 114,<br>1928-1936.       | 3.3  | 38        |
| 85 | Reactivation and pilot-scale application of long-term storage denitrification biofilm based on flow cytometry. Water Research, 2019, 148, 368-377.                                                                             | 11.3 | 38        |
| 86 | Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of <i>Propionibacterium jensenii</i> . Biotechnology and Bioengineering, 2016, 113, 1294-1304.                      | 3.3  | 37        |
| 87 | Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of<br><i>N</i> â€Acetylglucosamine in <i>Bacillus subtilis</i> . Biotechnology Journal, 2017, 12, 1700020.                               | 3.5  | 37        |
| 88 | High-yield secretory production of stable, active trypsin through engineering of the N-terminal peptide and self-degradation sites in Pichia pastoris. Bioresource Technology, 2018, 247, 81-87.                               | 9.6  | 37        |
| 89 | Improving the active expression of transglutaminase in Streptomyces lividans by promoter engineering and codon optimization. BMC Biotechnology, 2016, 16, 75.                                                                  | 3.3  | 36        |
| 90 | Combinatorial Evolution of Enzymes and Synthetic Pathways Using One-Step PCR. ACS Synthetic Biology, 2016, 5, 259-268.                                                                                                         | 3.8  | 36        |

| #   | Article                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications. World Journal of Microbiology and Biotechnology, 2017, 33, 19.                                                                                            | 3.6  | 36        |
| 92  | Combinatorial synthetic pathway fineâ€ŧuning and comparative transcriptomics for metabolic<br>engineering of <i>Raoultella ornithinolytica</i> BF60 to efficiently synthesize 2,5â€furandicarboxylic<br>acid. Biotechnology and Bioengineering, 2018, 115, 2148-2155. | 3.3  | 36        |
| 93  | Recent Advances in the Microbial Synthesis of Hemoglobin. Trends in Biotechnology, 2021, 39, 286-297.                                                                                                                                                                 | 9.3  | 36        |
| 94  | Biosynthesis of non-animal chondroitin sulfate from methanol using genetically engineered <i>Pichia pastoris</i> . Green Chemistry, 2021, 23, 4365-4374.                                                                                                              | 9.0  | 36        |
| 95  | De novo biosynthesis of rubusoside and rebaudiosides in engineered yeasts. Nature Communications, 2022, 13, .                                                                                                                                                         | 12.8 | 36        |
| 96  | Enhanced thermal stability and specific activity of Pseudomonas aeruginosa lipoxygenase by fusing<br>with self-assembling amphipathic peptides. Applied Microbiology and Biotechnology, 2013, 97, 9419-9427.                                                          | 3.6  | 35        |
| 97  | Modular pathway engineering of key carbonâ€precursor supplyâ€pathways for improved<br><i>N</i> â€acetylneuraminic acid production in <i>Bacillus subtilis</i> . Biotechnology and<br>Bioengineering, 2018, 115, 2217-2231.                                            | 3.3  | 35        |
| 98  | Adaptive Evolution Relieves Nitrogen Catabolite Repression and Decreases Urea Accumulation in<br>Cultures of the Chinese Rice Wine Yeast Strain <i>Saccharomyces cerevisiae</i> XZ-11. Journal of<br>Agricultural and Food Chemistry, 2018, 66, 9061-9069.            | 5.2  | 35        |
| 99  | Refactoring transcription factors for metabolic engineering. Biotechnology Advances, 2022, 57, 107935.                                                                                                                                                                | 11.7 | 35        |
| 100 | Construction of a novel, stable, food-grade expression system by engineering the endogenous toxin-antitoxin system in Bacillus subtilis. Journal of Biotechnology, 2016, 219, 40-47.                                                                                  | 3.8  | 34        |
| 101 | Effects of biosurfactants produced by Candida antarctica on the biodegradation of petroleum compounds. World Journal of Microbiology and Biotechnology, 2004, 20, 25-29.                                                                                              | 3.6  | 33        |
| 102 | A microbial–enzymatic strategy for producing chondroitin sulfate glycosaminoglycans.<br>Biotechnology and Bioengineering, 2018, 115, 1561-1570.                                                                                                                       | 3.3  | 33        |
| 103 | Titrating bacterial growth and chemical biosynthesis for efficient N-acetylglucosamine and N-acetylneuraminic acid bioproduction. Nature Communications, 2020, 11, 5078.                                                                                              | 12.8 | 33        |
| 104 | Analysis of the chemical composition of cotton seed coat by Fourier-transform infrared (FT-IR) microspectroscopy. Cellulose, 2009, 16, 1099-1107.                                                                                                                     | 4.9  | 32        |
| 105 | Identification of membrane proteins associated with phenylpropanoid tolerance and transport in Escherichia coli BL21. Journal of Proteomics, 2015, 113, 15-28.                                                                                                        | 2.4  | 32        |
| 106 | Combinatorial promoter engineering of glucokinase and phosphoglucoisomerase for improved<br>N-acetylglucosamine production in Bacillus subtilis. Bioresource Technology, 2017, 245, 1093-1102.                                                                        | 9.6  | 32        |
| 107 | Synergistic Rewiring of Carbon Metabolism and Redox Metabolism in Cytoplasm and Mitochondria of<br><i>Aspergillus oryzae</i> for Increased <scp>l</scp> -Malate Production. ACS Synthetic Biology, 2018,<br>7, 2139-2147.                                             | 3.8  | 32        |
| 108 | Modular pathway engineering of key precursor supply pathways for lacto-N-neotetraose production in Bacillus subtilis. Biotechnology for Biofuels, 2019, 12, 212.                                                                                                      | 6.2  | 32        |

| #   | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Enzymatic production of specifically distributed hyaluronan oligosaccharides. Carbohydrate<br>Polymers, 2015, 129, 194-200.                                                                                                                                  | 10.2 | 31        |
| 110 | The application of powerful promoters to enhance gene expression in industrial microorganisms.<br>World Journal of Microbiology and Biotechnology, 2017, 33, 23.                                                                                             | 3.6  | 31        |
| 111 | Improved production of α-ketoglutaric acid (α-KG) by a Bacillus subtilis whole-cell biocatalyst via engineering of l-amino acid deaminase and deletion of the α-KG utilization pathway. Journal of Biotechnology, 2014, 187, 71-77.                          | 3.8  | 30        |
| 112 | An optimal glucose feeding strategy integrated with step-wise regulation of the dissolved oxygen<br>level improves N-acetylglucosamine production in recombinant Bacillus subtilis. Bioresource<br>Technology, 2015, 177, 387-392.                           | 9.6  | 30        |
| 113 | Efficient bioconversion of epimedin C to icariin by a glycosidase from Aspergillus nidulans.<br>Bioresource Technology, 2019, 289, 121612.                                                                                                                   | 9.6  | 30        |
| 114 | Efficient heterologous expression of cytochrome P450 enzymes in microorganisms for the biosynthesis of natural products. Critical Reviews in Biotechnology, 2023, 43, 227-241.                                                                               | 9.0  | 30        |
| 115 | Comparative metabolomics analysis of the key metabolic nodes in propionic acid synthesis in<br>Propionibacterium acidipropionici. Metabolomics, 2015, 11, 1106-1116.                                                                                         | 3.0  | 29        |
| 116 | Characterization of mutants of a tyrosine ammonia-lyase from Rhodotorula glutinis. Applied Microbiology and Biotechnology, 2016, 100, 10443-10452.                                                                                                           | 3.6  | 29        |
| 117 | Recent advances in enhanced enzyme activity, thermostability and secretion by N-glycosylation regulation in yeast. Biotechnology Letters, 2018, 40, 847-854.                                                                                                 | 2.2  | 29        |
| 118 | Comparative genomics and transcriptomics analysisâ€guided metabolic engineering of<br><i>Propionibacterium acidipropionici</i> for improved propionic acid production. Biotechnology and<br>Bioengineering, 2018, 115, 483-494.                              | 3.3  | 29        |
| 119 | Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory<br>mechanism for dynamic metabolic engineering in Bacillus subtilis. Metabolic Engineering, 2019, 55,<br>179-190.                                               | 7.0  | 29        |
| 120 | Cell Membrane and Electron Transfer Engineering for Improved Synthesis of Menaquinone-7 in<br>Bacillus subtilis. IScience, 2020, 23, 100918.                                                                                                                 | 4.1  | 29        |
| 121 | Identification and application of keto acids transporters in Yarrowia lipolytica. Scientific Reports, 2015, 5, 8138.                                                                                                                                         | 3.3  | 28        |
| 122 | One-step biosynthesis of α-ketoisocaproate from l-leucine by an Escherichia coli whole-cell biocatalyst<br>expressing an l-amino acid deaminase from Proteus vulgaris. Scientific Reports, 2015, 5, 12614.                                                   | 3.3  | 28        |
| 123 | Combination of phenylpyruvic acid (PPA) pathway engineering and molecular engineering of l-amino<br>acid deaminase improves PPA production with an Escherichia coli whole-cell biocatalyst. Applied<br>Microbiology and Biotechnology, 2016, 100, 2183-2191. | 3.6  | 28        |
| 124 | Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources.<br>Journal of Proteomics, 2014, 101, 102-112.                                                                                                                   | 2.4  | 27        |
| 125 | Insight into the substrate specificity of keratinase KerSMD from Stenotrophomonas maltophilia by site-directed mutagenesis studies in the S1 pocket. RSC Advances, 2015, 5, 74953-74960.                                                                     | 3.6  | 27        |
| 126 | Multivariate modular engineering of the protein secretory pathway for production of heterologous glucose oxidase in Pichia pastoris. Enzyme and Microbial Technology, 2015, 68, 33-42.                                                                       | 3.2  | 27        |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | A high-throughput screening procedure for enhancing pyruvate production in Candida glabrata by random mutagenesis. Bioprocess and Biosystems Engineering, 2017, 40, 693-701.                                                      | 3.4 | 27        |
| 128 | Stress tolerance phenotype of industrial yeast: industrial cases, cellular changes, and improvement strategies. Applied Microbiology and Biotechnology, 2019, 103, 6449-6462.                                                     | 3.6 | 27        |
| 129 | Design and construction of novel biocatalyst for bioprocessing: Recent advances and future outlook.<br>Bioresource Technology, 2021, 332, 125071.                                                                                 | 9.6 | 27        |
| 130 | Growth-coupled evolution and high-throughput screening assisted rapid enhancement for amylase-producing Bacillus licheniformis. Bioresource Technology, 2021, 337, 125467.                                                        | 9.6 | 27        |
| 131 | Improved propionic acid production with metabolically engineered Propionibacterium jensenii by an oxidoreduction potential-shift control strategy. Bioresource Technology, 2015, 175, 606-612.                                    | 9.6 | 26        |
| 132 | DATEL: A Scarless and Sequence-Independent DNA Assembly Method Using Thermostable Exonucleases and Ligase. ACS Synthetic Biology, 2016, 5, 1028-1032.                                                                             | 3.8 | 26        |
| 133 | Enhancing subtilisin thermostability through a modified normalized B-factor analysis and loop-grafting strategy. Journal of Biological Chemistry, 2019, 294, 18398-18407.                                                         | 3.4 | 26        |
| 134 | Metabolic engineering of Corynebacterium glutamicum S9114 based on whole-genome sequencing for efficient N-acetylglucosamine synthesis. Synthetic and Systems Biotechnology, 2019, 4, 120-129.                                    | 3.7 | 26        |
| 135 | Efficient production of l-sorbose from d-sorbitol by whole cell immobilization of Gluconobacter oxydans WSH-003. Biochemical Engineering Journal, 2013, 77, 171-176.                                                              | 3.6 | 25        |
| 136 | Improved catalytic efficiency, thermophilicity, anti-salt and detergent tolerance of keratinase KerSMD by partially truncation of PPC domain. Scientific Reports, 2016, 6, 27953.                                                 | 3.3 | 25        |
| 137 | Metabolic engineering for the production of fat-soluble vitamins: advances and perspectives. Applied<br>Microbiology and Biotechnology, 2020, 104, 935-951.                                                                       | 3.6 | 25        |
| 138 | One-Step Biosynthesis of α-Keto-γ-Methylthiobutyric Acid from L-Methionine by an Escherichia coli<br>Whole-Cell Biocatalyst Expressing an Engineered L-Amino Acid Deaminase from Proteus vulgaris. PLoS<br>ONE, 2014, 9, e114291. | 2.5 | 25        |
| 139 | Enzymatic transformation of 2-O-α-D-glucopyranosyl-L-ascorbic acid by α-cyclodextrin<br>glucanotransferase from recombinant Escherichia coli. Biotechnology and Bioprocess Engineering,<br>2011, 16, 107-113.                     | 2.6 | 24        |
| 140 | Pathway engineering of Propionibacterium jensenii for improved production of propionic acid.<br>Scientific Reports, 2016, 6, 19963.                                                                                               | 3.3 | 24        |
| 141 | Engineering enzymatic cascades for the efficient biotransformation of eugenol and taxifolin to silybin and isosilybin. Green Chemistry, 2019, 21, 1660-1667.                                                                      | 9.0 | 24        |
| 142 | Metabolic engineering of Escherichia coli for the production of Lacto-N-neotetraose (LNnT). Systems<br>Microbiology and Biomanufacturing, 2021, 1, 291-301.                                                                       | 2.9 | 24        |
| 143 | The microbiome of Chinese rice wine (Huangjiu). Current Research in Food Science, 2022, 5, 325-335.                                                                                                                               | 5.8 | 24        |
| 144 | A multifunctional tag with the ability to benefit the expression, purification, thermostability and activity of recombinant proteins. Journal of Biotechnology, 2018, 283, 1-10.                                                  | 3.8 | 23        |

| #   | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin. Frontiers of Environmental Science and Engineering, 2019, 13, 1.                               | 6.0  | 23        |
| 146 | Rapid evolution of hyaluronan synthase to improve hyaluronan production and molecular mass in<br>Bacillus subtilis. Biotechnology Letters, 2016, 38, 2103-2108.                                                          | 2.2  | 22        |
| 147 | A Bacillus paralicheniformis Iron-Containing Urease Reduces Urea Concentrations in Rice Wine.<br>Applied and Environmental Microbiology, 2017, 83, .                                                                     | 3.1  | 22        |
| 148 | Enhanced pyruvate production in <i>Candida glabrata</i> by carrier engineering. Biotechnology and<br>Bioengineering, 2018, 115, 473-482.                                                                                 | 3.3  | 22        |
| 149 | Efficient biosynthesis of 2-keto-D-gluconic acid by fed-batch culture of metabolically engineered Gluconobacter japonicus. Synthetic and Systems Biotechnology, 2019, 4, 134-141.                                        | 3.7  | 22        |
| 150 | Synthesis of bioengineered heparin by recombinant yeast <i>Pichia pastoris</i> . Green Chemistry, 2022, 24, 3180-3192.                                                                                                   | 9.0  | 22        |
| 151 | Overproduction of pro-transglutaminase from Streptomyces hygroscopicus in Yarrowia lipolytica and its biochemical characterization. BMC Biotechnology, 2015, 15, 75.                                                     | 3.3  | 21        |
| 152 | The fungal laccase atalyzed oxidation of <scp>EGCG</scp> and the characterization of its products.<br>Journal of the Science of Food and Agriculture, 2015, 95, 2686-2692.                                               | 3.5  | 21        |
| 153 | Characterization of a Bacillus amyloliquefaciens strain for reduction of citrulline accumulation during soy sauce fermentation. Biotechnology Letters, 2016, 38, 1723-1731.                                              | 2.2  | 21        |
| 154 | Bile salt tolerance of Lactococcus lactis is enhanced by expression of bile salt hydrolase thereby producing less bile acid in the cells. Biotechnology Letters, 2016, 38, 659-665.                                      | 2.2  | 21        |
| 155 | Systemic understanding of Lactococcus lactis response to acid stress using transcriptomics approaches. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1621-1629.                                        | 3.0  | 21        |
| 156 | Secretory Expression Fine-Tuning and Directed Evolution of Diacetylchitobiose Deacetylase by<br>Bacillus subtilis. Applied and Environmental Microbiology, 2019, 85, .                                                   | 3.1  | 21        |
| 157 | Synthetic metabolic channel by functional membrane microdomains for compartmentalized flux control. Metabolic Engineering, 2020, 59, 106-118.                                                                            | 7.0  | 21        |
| 158 | Preparation and characterization of hyaluronan/chitosan scaffold cross- linked by<br>1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. Polymer International, 2007, 56, 738-745.                                           | 3.1  | 20        |
| 159 | Construction of Synthetic Promoters by Assembling the Sigma Factor Binding â^'35 and â^'10 Boxes.<br>Biotechnology Journal, 2019, 14, e1800298.                                                                          | 3.5  | 20        |
| 160 | Enhancement of 2-phenylethanol production by a wild-type Wickerhamomyces anomalus strain isolated from rice wine. Bioresource Technology, 2020, 318, 124257.                                                             | 9.6  | 20        |
| 161 | Closed-Loop System Driven by ADP Phosphorylation from Pyrophosphate Affords Equimolar Transformation of ATP to $3\hat{a}\in^2$ -Phosphoadenosine- $5\hat{a}\in^2$ -phosphosulfate. ACS Catalysis, 2021, 11, 10405-10415. | 11.2 | 20        |
| 162 | Engineering diacetylchitobiose deacetylase from Pyrococcus horikoshii towards an efficient<br>glucosamine production. Bioresource Technology, 2021, 334, 125241.                                                         | 9.6  | 20        |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Effects of dissolved oxygen concentration and DO-stat feeding strategy on CoQ10production with Rhizobium radiobacter. World Journal of Microbiology and Biotechnology, 2003, 19, 925-928.                                                     | 3.6 | 19        |
| 164 | Optimization of Cultivation Conditions for the Production of γ-Cyclodextrin Glucanotransferase byBacillus macorous. Food Biotechnology, 2004, 18, 251-264.                                                                                    | 1.5 | 19        |
| 165 | New insight into the catalytic properties of bile salt hydrolase. Journal of Molecular Catalysis B:<br>Enzymatic, 2013, 96, 46-51.                                                                                                            | 1.8 | 19        |
| 166 | Construction and development of a novel expression system of Streptomyces. Protein Expression and Purification, 2015, 113, 17-22.                                                                                                             | 1.3 | 19        |
| 167 | Metabolic engineering of Aspergillus oryzae for efficient production of l -malate directly from corn starch. Journal of Biotechnology, 2017, 262, 40-46.                                                                                      | 3.8 | 19        |
| 168 | Protein engineering to enhance keratinolytic protease activity and excretion in Escherichia coli and<br>its scale-up fermentation for high extracellular yield. Enzyme and Microbial Technology, 2019, 121,<br>37-44.                         | 3.2 | 19        |
| 169 | Bioaugmentation of Bacillus amyloliquefaciens–Bacillus kochii co-cultivation to improve sensory quality of flue-cured tobacco. Archives of Microbiology, 2021, 203, 5723-5733.                                                                | 2.2 | 19        |
| 170 | Recent advances in the development of Aspergillus for protein production. Bioresource Technology, 2022, 348, 126768.                                                                                                                          | 9.6 | 19        |
| 171 | Title is missing!. World Journal of Microbiology and Biotechnology, 2003, 19, 433-437.                                                                                                                                                        | 3.6 | 18        |
| 172 | Influence of hyaluronidase addition on the production of hyaluronic acid by batch culture of Streptococcuszooepidemicus. Food Chemistry, 2008, 110, 923-926.                                                                                  | 8.2 | 18        |
| 173 | Enhancement of pyruvic acid production in Candida glabrata by engineering hypoxia-inducible factor 1.<br>Bioresource Technology, 2020, 295, 122248.                                                                                           | 9.6 | 18        |
| 174 | Efficient separation of α-ketoglutarate from Yarrowia lipolytica WSH-Z06 culture broth by converting pyruvate to l-tyrosine. Bioresource Technology, 2019, 292, 121897.                                                                       | 9.6 | 17        |
| 175 | Gene cloning and expression of the l-asparaginase from Bacillus cereus BDRD-ST26 in Bacillus subtilis<br>WB600. Journal of Bioscience and Bioengineering, 2019, 127, 418-424.                                                                 | 2.2 | 17        |
| 176 | High-yield and plasmid-free biocatalytic production of 5-methylpyrazine-2-carboxylic acid by<br>combinatorial genetic elements engineering and genome engineering of Escherichia coli. Enzyme and<br>Microbial Technology, 2020, 134, 109488. | 3.2 | 17        |
| 177 | Enzyme Assembly for Compartmentalized Metabolic Flux Control. Metabolites, 2020, 10, 125.                                                                                                                                                     | 2.9 | 17        |
| 178 | Combining CRISPR–Cpf1 and Recombineering Facilitates Fast and Efficient Genome Editing in<br><i>Escherichia coli</i> . ACS Synthetic Biology, 2022, 11, 1897-1907.                                                                            | 3.8 | 17        |
| 179 | Transporter engineering and enzyme evolution for pyruvate production from d/l-alanine with a whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis. RSC Advances, 2016, 6, 82676-82684.                             | 3.6 | 16        |
| 180 | Integrated Optimization of the In Vivo Heme Biosynthesis Pathway and the In Vitro Iron Concentration for 5-Aminolevulinate Production. Applied Biochemistry and Biotechnology, 2016, 178, 1252-1262.                                          | 2.9 | 16        |

| #   | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Biological production of l-malate: recent advances and future prospects. World Journal of<br>Microbiology and Biotechnology, 2018, 34, 6.                                                                                  | 3.6  | 16        |
| 182 | Construction of saturated odd- and even-numbered hyaluronan oligosaccharide building block<br>library. Carbohydrate Polymers, 2020, 231, 115700.                                                                           | 10.2 | 16        |
| 183 | Systems metabolic engineering of <i>Bacillus subtilis</i> for efficient biosynthesis of<br>5â€methyltetrahydrofolate. Biotechnology and Bioengineering, 2020, 117, 2116-2130.                                              | 3.3  | 16        |
| 184 | Current progress and prospects of enzyme technologies in future foods. Systems Microbiology and Biomanufacturing, 2021, 1, 24-32.                                                                                          | 2.9  | 16        |
| 185 | Improved Neomycin Sulfate Potency in Streptomyces fradiae Using Atmospheric and Room Temperature<br>Plasma (ARTP) Mutagenesis and Fermentation Medium Optimization. Microorganisms, 2022, 10, 94.                          | 3.6  | 16        |
| 186 | Significantly Enhanced Thermostability of <i>Aspergillus niger</i> Xylanase by Modifying Its Highly<br>Flexible Regions. Journal of Agricultural and Food Chemistry, 2022, 70, 4620-4630.                                  | 5.2  | 16        |
| 187 | Production of polyvinyl alcohol-degrading enzyme withJanthinobacterium sp. and its application in cotton fabric desizing. Biotechnology Journal, 2007, 2, 752-758.                                                         | 3.5  | 15        |
| 188 | Effects of three permeases on arginine utilization in Saccharomyces cerevisiae. Scientific Reports, 2016, 6, 20910.                                                                                                        | 3.3  | 15        |
| 189 | Comparative genomics analysis of a series of Yarrowia lipolytica WSH-Z06 mutants with varied capacity for α-ketoglutarate production. Journal of Biotechnology, 2016, 239, 76-82.                                          | 3.8  | 15        |
| 190 | Metabolic engineering for amino-, oligo-, and polysugar production in microbes. Applied Microbiology<br>and Biotechnology, 2016, 100, 2523-2533.                                                                           | 3.6  | 15        |
| 191 | Rational molecular engineering of <scp>l</scp> -amino acid deaminase for production of<br>α-ketoisovaleric acid from <scp>l</scp> -valine by Escherichia coli. RSC Advances, 2017, 7, 6615-6621.                           | 3.6  | 15        |
| 192 | Secretory expression of biologically active chondroitinase ABC I for production of chondroitin sulfate oligosaccharides. Carbohydrate Polymers, 2019, 224, 115135.                                                         | 10.2 | 15        |
| 193 | Engineering of L-amino acid deaminases for the production of α-keto acids from L-amino acids.<br>Bioengineered, 2019, 10, 43-51.                                                                                           | 3.2  | 15        |
| 194 | Synthetic repetitive extragenic palindromic (REP) sequence as an efficient mRNA stabilizer for protein<br>production and metabolic engineering in prokaryotic cells. Biotechnology and Bioengineering, 2019,<br>116, 5-18. | 3.3  | 15        |
| 195 | Assembly of pathway enzymes by engineering functional membrane microdomain components for<br>improved N-acetylglucosamine synthesis in Bacillus subtilis. Metabolic Engineering, 2020, 61, 96-105.                         | 7.0  | 15        |
| 196 | Engineering the heparin-binding pocket to enhance the catalytic efficiency of a thermostable<br>heparinase III from Bacteroides thetaiotaomicron. Enzyme and Microbial Technology, 2020, 137, 109549.                      | 3.2  | 15        |
| 197 | Engineered proâ€peptide enhances the catalytic activity of keratinase to improve the conversion ability of feather waste. Biotechnology and Bioengineering, 2021, 118, 2559-2571.                                          | 3.3  | 15        |
| 198 | Combinatorial engineering for efficient production of protein-glutaminase in Bacillus subtilis.<br>Enzyme and Microbial Technology, 2021, 150, 109863.                                                                     | 3.2  | 15        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Influence of culture modes on the microbial production of hyaluronic acid by Streptococcus zooepidemicus. Biotechnology and Bioprocess Engineering, 2008, 13, 269-273.                                                    | 2.6 | 14        |
| 200 | Effect of cutinase on the degradation of cotton seed coat in bio-scouring. Biotechnology and Bioprocess Engineering, 2009, 14, 354-360.                                                                                   | 2.6 | 14        |
| 201 | A new sRNAâ€mediated posttranscriptional regulation system for <i>Bacillus subtilis</i> .<br>Biotechnology and Bioengineering, 2018, 115, 2986-2995.                                                                      | 3.3 | 14        |
| 202 | A new approach for efficient synthesis of phenyllactic acid from L-phenylalanine: Pathway design and cofactor engineering. Journal of Food Biochemistry, 2018, 42, e12584.                                                | 2.9 | 14        |
| 203 | Systematic characterization of sorbose/sorbosone dehydrogenases and sorbosone dehydrogenases from Ketogulonicigenium vulgare WSH-001. Journal of Biotechnology, 2019, 301, 24-34.                                         | 3.8 | 14        |
| 204 | Engineering strong and stress-responsive promoters in Bacillus subtilis by interlocking sigma factor binding motifs. Synthetic and Systems Biotechnology, 2019, 4, 197-203.                                               | 3.7 | 14        |
| 205 | High-Throughput Screening of a 2-Keto-L-Gulonic Acid-Producing Gluconobacter oxydans Strain Based on Related Dehydrogenases. Frontiers in Bioengineering and Biotechnology, 2019, 7, 385.                                 | 4.1 | 14        |
| 206 | Genome sequencing and flavor compound biosynthesis pathway analyses of <i>Bacillus<br/>licheniformis</i> isolated from Chinese <i>Maotai</i> -flavor liquor-brewing microbiome. Food<br>Biotechnology, 2020, 34, 193-211. | 1.5 | 14        |
| 207 | Biocatalytic synthesis of lactosucrose using a recombinant thermostable β-fructofuranosidase from <i>Arthrobacter</i> sp. 10138. Bioengineered, 2020, 11, 416-427.                                                        | 3.2 | 14        |
| 208 | Recent advances and challenges in microbial production of human milk oligosaccharides. Systems<br>Microbiology and Biomanufacturing, 2021, 1, 1-14.                                                                       | 2.9 | 14        |
| 209 | Conferring thermotolerant phenotype to wildâ€ŧype <i>Yarrowia lipolytica</i> improves cell growth and erythritol production. Biotechnology and Bioengineering, 2021, 118, 3117-3127.                                      | 3.3 | 14        |
| 210 | Synthetic Biology Toolkits and Metabolic Engineering Applied in <i>Corynebacterium glutamicum</i> for Biomanufacturing. ACS Synthetic Biology, 2021, 10, 3237-3250.                                                       | 3.8 | 14        |
| 211 | Engineered yeast for efficient de novo synthesis of 7â€dehydrocholesterol. Biotechnology and<br>Bioengineering, 2022, 119, 1278-1289.                                                                                     | 3.3 | 14        |
| 212 | Title is missing!. World Journal of Microbiology and Biotechnology, 2002, 18, 767-771.                                                                                                                                    | 3.6 | 13        |
| 213 | Engineering of an H <sub>2</sub> O <sub>2</sub> autoâ€scavenging in vivo cascade for pinoresinol production. Biotechnology and Bioengineering, 2017, 114, 2066-2074.                                                      | 3.3 | 13        |
| 214 | Improving bioconversion of eugenol to coniferyl alcohol by in situ eliminating harmful H2O2.<br>Bioresource Technology, 2018, 267, 578-583.                                                                               | 9.6 | 13        |
| 215 | Deep dewatering process of sludge by chemical conditioning and its potential influence on wastewater treatment plants. Environmental Science and Pollution Research, 2019, 26, 33838-33846.                               | 5.3 | 13        |
| 216 | Combinatorial engineering for improved menaquinone-4 biosynthesis in Bacillus subtilis. Enzyme and<br>Microbial Technology, 2020, 141, 109652.                                                                            | 3.2 | 13        |

| #   | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Optimizing the sulfation-modification system for scale preparation of chondroitin sulfate A.<br>Carbohydrate Polymers, 2020, 246, 116570.                                                                                                      | 10.2 | 13        |
| 218 | Reconstruction of the glutamate decarboxylase system in Lactococcus lactis for biosynthesis of food-grade Î <sup>3</sup> -aminobutyric acid. Applied Microbiology and Biotechnology, 2021, 105, 4127-4140.                                     | 3.6  | 13        |
| 219 | Recent Advances in the Physicochemical Properties and Biotechnological Application of Vitreoscilla<br>Hemoglobin. Microorganisms, 2021, 9, 1455.                                                                                               | 3.6  | 13        |
| 220 | Vitamin C enhances the <i>ex vivo</i> proliferation of porcine muscle stem cells for cultured meat production. Food and Function, 2022, 13, 5089-5101.                                                                                         | 4.6  | 13        |
| 221 | Screening and characterization of an aerobic nitrifying-denitrifying bacterium from activated sludge.<br>Biotechnology and Bioprocess Engineering, 2012, 17, 353-360.                                                                          | 2.6  | 12        |
| 222 | Mutagenesis of conserved active site residues of dihydrolipoamide succinyltransferase enhances the<br>accumulation of α-ketoglutarate in Yarrowia lipolytica. Applied Microbiology and Biotechnology, 2016,<br>100, 649-659.                   | 3.6  | 12        |
| 223 | Short communication: Protection of lyophilized milk starter Lactobacillus casei Zhang by glutathione. Journal of Dairy Science, 2016, 99, 1846-1852.                                                                                           | 3.4  | 12        |
| 224 | Identification of a polysaccharide produced by the pyruvate overproducer Candida glabrata CCTCC M202019. Applied Microbiology and Biotechnology, 2017, 101, 4447-4458.                                                                         | 3.6  | 12        |
| 225 | Mutant Potential Ubiquitination Sites in Dur3p Enhance the Urea and Ethyl Carbamate Reduction in a<br>Model Rice Wine System. Journal of Agricultural and Food Chemistry, 2017, 65, 1641-1648.                                                 | 5.2  | 12        |
| 226 | Efficient expression of cyclodextrin glycosyltransferase from Geobacillus stearothermophilus in<br>Escherichia coli by promoter engineering and downstream box evolution. Journal of Biotechnology,<br>2018, 266, 77-83.                       | 3.8  | 12        |
| 227 | An efficient expression tag library based on self-assembling amphipathic peptides. Microbial Cell<br>Factories, 2019, 18, 91.                                                                                                                  | 4.0  | 12        |
| 228 | Enhanced Production of Transglutaminase in <i>Streptomyces mobaraensis</i> through Random<br>Mutagenesis and Site-Directed Genetic Modification. Journal of Agricultural and Food Chemistry,<br>2021, 69, 3144-3153.                           | 5.2  | 12        |
| 229 | Efficient Secretory Expression and Purification of Food-Grade Porcine Myoglobin in <i>Komagataella phaffii</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 10235-10245.                                                            | 5.2  | 12        |
| 230 | Biocatalytic Production of Glucosamine from N-Acetylglucosamine by Diacetylchitobiose Deacetylase.<br>Journal of Microbiology and Biotechnology, 2018, 28, 1850-1858.                                                                          | 2.1  | 12        |
| 231 | The challenges and prospects of Escherichia coli as an organic acid production host under acid stress. Applied Microbiology and Biotechnology, 2021, 105, 8091-8107.                                                                           | 3.6  | 12        |
| 232 | Correlation between the microbial community and ethyl carbamate generated during Huzhou rice wine fermentation. Food Research International, 2022, 154, 111001.                                                                                | 6.2  | 12        |
| 233 | Optimization of sodium dedecyl sulfate (SDS) addition coupled with adenosine triphosphate (ATP) regeneration for glutathione overproduction in high density cultivation of Candida utilis. Enzyme and Microbial Technology, 2010, 46, 526-533. | 3.2  | 11        |
| 234 | Integrating enzyme evolution and high-throughput screening for efficient biosynthesis of<br><scp>l</scp> -DOPA. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1631-1641.                                                     | 3.0  | 11        |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Visualized Multigene Editing System for <i>Aspergillus niger</i> . ACS Synthetic Biology, 2021, 10, 2607-2616.                                                                                                                | 3.8 | 11        |
| 236 | Combinatorial Fine-tuning of Phospholipase DExpression by Bacillus subtilis WB600for the<br>Production of Phosphatidylserine. Journal of Microbiology and Biotechnology, 2018, 28, 2046-2056.                                 | 2.1 | 11        |
| 237 | Engineering of Synthetic Multiplexed Pathways for High-Level <i>N</i> -Acetylneuraminic Acid<br>Bioproduction. Journal of Agricultural and Food Chemistry, 2021, 69, 14868-14877.                                             | 5.2 | 11        |
| 238 | The modification of Gat1p in nitrogen catabolite repression to enhance non-preferred nitrogen utilization in Saccharomyces cerevisiae. Scientific Reports, 2016, 6, 21603.                                                    | 3.3 | 10        |
| 239 | Improved acid-stress tolerance of Lactococcus lactis NZ9000 and Escherichia coli BL21 by overexpression of the anti-acid component recT. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 1091-1101.           | 3.0 | 10        |
| 240 | Combinatorial Fine-Tuning of GNA1 and GlmS Expression by 5'-Terminus Fusion Engineering Leads to<br>Overproduction of N-Acetylglucosamine in <i>Bacillus subtilis</i> . Biotechnology Journal, 2019, 14,<br>1800264.          | 3.5 | 10        |
| 241 | Food-grade expression of an iron-containing acid urease in Bacillus subtilis. Journal of<br>Biotechnology, 2019, 293, 66-71.                                                                                                  | 3.8 | 10        |
| 242 | Two-Step Production of Phenylpyruvic Acid from L-Phenylalanine by Growing and Resting Cells of<br>Engineered Escherichia coli: Process Optimization and Kinetics Modeling. PLoS ONE, 2016, 11, e0166457.                      | 2.5 | 10        |
| 243 | The N-Terminal α-Helix Domain of Pseudomonas aeruginosa Lipoxygenase Is Required for Its Soluble<br>Expression in Escherichia coli but Not for Catalysis. Journal of Microbiology and Biotechnology,<br>2016, 26, 1701-1707.  | 2.1 | 10        |
| 244 | Combinatorial Methylerythritol Phosphate Pathway Engineering and Process Optimization for<br>Increased Menaquinone-7 Synthesis in <i>Bacillus subtilis</i> . Journal of Microbiology and<br>Biotechnology, 2020, 30, 762-769. | 2.1 | 10        |
| 245 | Effect of microbial transglutaminase on dyeing properties of natural dyes on wool fabric.<br>Biocatalysis and Biotransformation, 2008, 26, 399-404.                                                                           | 2.0 | 9         |
| 246 | Enhanced cutinase production of Thermobifida fusca by a two-stage batch and fed-batch cultivation strategy. Biotechnology and Bioprocess Engineering, 2009, 14, 46-51.                                                        | 2.6 | 9         |
| 247 | Influence of aeration intensity on the performance of A/O-type sequencing batch MBR system treating azo dye wastewater. Frontiers of Environmental Science and Engineering in China, 2011, 5, 615-622.                        | 0.8 | 9         |
| 248 | Efficient transformation of Rhizopus delemar by electroporation of germinated spores. Journal of<br>Microbiological Methods, 2014, 103, 58-63.                                                                                | 1.6 | 9         |
| 249 | Genome-wide mapping of nucleosome positions in Saccharomyces cerevisiae in response to different nitrogen conditions. Scientific Reports, 2016, 6, 33970.                                                                     | 3.3 | 9         |
| 250 | Integrating error-prone PCR and DNA shuffling as an effective molecular evolution strategy for the production of α-ketoglutaric acid by <scp>l</scp> -amino acid deaminase. RSC Advances, 2016, 6, 46149-46158.               | 3.6 | 9         |
| 251 | Self-induction system for cellulase production by cellobiose produced from glucose in Rhizopus stolonifer. Scientific Reports, 2017, 7, 10161.                                                                                | 3.3 | 9         |
| 252 | Metabolic engineering for the production of chitooligosaccharides: advances and perspectives.<br>Emerging Topics in Life Sciences, 2018, 2, 377-388.                                                                          | 2.6 | 9         |

| #   | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Identification of NAD-Dependent Xylitol Dehydrogenase from <i>Gluconobacter oxydans</i> WSH-003.<br>ACS Omega, 2019, 4, 15074-15080.                                                                             | 3.5  | 9         |
| 254 | Pathway Engineering of <i>Bacillus subtilis</i> for Enhanced <i>N</i> â€Acetylneuraminic Acid<br>Production via Wholeâ€Cell Biocatalysis. Biotechnology Journal, 2019, 14, e1800682.                             | 3.5  | 9         |
| 255 | Towards next-generation model microorganism chassis for biomanufacturing. Applied Microbiology<br>and Biotechnology, 2020, 104, 9095-9108.                                                                       | 3.6  | 9         |
| 256 | Development of a DNA double-strand break-free base editing tool in Corynebacterium glutamicum for genome editing and metabolic engineering. Metabolic Engineering Communications, 2020, 11, e00135.              | 3.6  | 9         |
| 257 | High level production of diacetylchitobiose deacetylase by refactoring genetic elements and cellular metabolism. Bioresource Technology, 2021, 341, 125836.                                                      | 9.6  | 9         |
| 258 | Effects of nitrogen catabolite repression-related amino acids on the flavour of rice wine. Journal of the Institute of Brewing, 2015, 121, 581-588.                                                              | 2.3  | 8         |
| 259 | Complete genome sequence and analysis of the industrial Saccharomyces cerevisiae strain N85 used in Chinese rice wine production. DNA Research, 2018, 25, 297-306.                                               | 3.4  | 8         |
| 260 | Development and optimization of <i>N</i> â€acetylneuraminic acid biosensors in <i>Bacillus subtilis</i> .<br>Biotechnology and Applied Biochemistry, 2020, 67, 693-705.                                          | 3.1  | 8         |
| 261 | The elucidation of phosphosugar stress response in <i>Bacillus subtilis</i> guides strain engineering<br>for high <i>N</i> â€acetylglucosamine production. Biotechnology and Bioengineering, 2021, 118, 383-396. | 3.3  | 8         |
| 262 | Metaproteomic analysis of enzymatic composition in Baobaoqu fermentation starter for Wuliangye<br>baijiu. International Journal of Food Science and Technology, 2021, 56, 4170-4181.                             | 2.7  | 8         |
| 263 | Production of Cellulases by Rhizopus stolonifer from Glucose-Containing Media Based on the<br>Regulation of Transcriptional Regulator CRE. Journal of Microbiology and Biotechnology, 2017, 27,<br>514-523.      | 2.1  | 8         |
| 264 | Recent advances and prospects in purification and heterologous expression of lactoferrin. , 2022, 1, 58-67.                                                                                                      |      | 8         |
| 265 | Biosynthesis of non-sulfated high-molecular-weight glycosaminoglycans and specific-sized oligosaccharides. Carbohydrate Polymers, 2022, 295, 119829.                                                             | 10.2 | 8         |
| 266 | Synergetic engineering of central carbon and nitrogen metabolism for the production<br>ofNâ€acetylglucosamine inBacillus subtilis. Biotechnology and Applied Biochemistry, 2020, 67, 123-132.                    | 3.1  | 7         |
| 267 | Engineering a thermostable chondroitinase for production of specifically distributed<br>Iowâ€molecularâ€weight chondroitin sulfate. Biotechnology Journal, 2021, 16, e2000321.                                   | 3.5  | 7         |
| 268 | Engineering a ComA Quorum-Sensing circuit to dynamically control the production of<br>Menaquinone-4 in Bacillus subtilis. Enzyme and Microbial Technology, 2021, 147, 109782.                                    | 3.2  | 7         |
| 269 | Inducible Population Quality Control of Engineered <i>Bacillus subtilis</i> for Improved<br><i>N</i> -Acetylneuraminic Acid Biosynthesis. ACS Synthetic Biology, 2021, 10, 2197-2209.                            | 3.8  | 7         |
| 270 | Metabolic Engineering of Saccharomyces cerevisiae to Improve Glucan Biosynthesis. Journal of<br>Microbiology and Biotechnology, 2019, 29, 758-764.                                                               | 2.1  | 7         |

| #   | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Structure and cleavage pattern of a hyaluronate 3-glycanohydrolase in the glycoside hydrolase 79<br>family. Carbohydrate Polymers, 2022, 277, 118838.                                                                            | 10.2 | 7         |
| 272 | Modelâ€driven design of synthetic Nâ€ŧerminal coding sequences for regulating gene expression in yeast<br>and bacteria. Biotechnology Journal, 2022, 17, e2100655.                                                               | 3.5  | 7         |
| 273 | Combinatorial pathway engineering of Bacillus subtilis for production of structurally defined and homogeneous chitooligosaccharides. Metabolic Engineering, 2022, 70, 55-66.                                                     | 7.0  | 7         |
| 274 | Construction of Multiscale Genome-Scale Metabolic Models: Frameworks and Challenges.<br>Biomolecules, 2022, 12, 721.                                                                                                             | 4.0  | 7         |
| 275 | Modeling and optimization of cutinase production by recombinant Escherichia coli based on statistical experimental designs. Korean Journal of Chemical Engineering, 2010, 27, 1233-1238.                                         | 2.7  | 6         |
| 276 | One step synthesis of unnatural β-arylalanines using mutant phenylalanine aminomutase from Taxus<br>chinensis with high β-regioselectivity. Enzyme and Microbial Technology, 2018, 114, 22-28.                                   | 3.2  | 6         |
| 277 | Separation and purification of α-ketoglutarate and pyruvate from the fermentation broth of Yarrowia lipolytica. Bioprocess and Biosystems Engineering, 2018, 41, 1519-1527.                                                      | 3.4  | 6         |
| 278 | Quantitation of RNA by a fluorometric method using the SYTO RNASelect stain. Analytical Biochemistry, 2020, 606, 113857.                                                                                                         | 2.4  | 6         |
| 279 | Engineering of Biosynthesis Pathway and NADPH Supply for Improved L-5-Methyltetrahydrofolate<br>Production by <i>Lactococcus lactis</i> . Journal of Microbiology and Biotechnology, 2021, 31, 154-162.                          | 2.1  | 6         |
| 280 | Tuning the transcription and translation of L-amino acid deaminase in Escherichia coli improves<br>α-ketoisocaproate production from L-leucine. PLoS ONE, 2017, 12, e0179229.                                                    | 2.5  | 6         |
| 281 | Chitin deacetylase: from molecular structure to practical applications. Systems Microbiology and Biomanufacturing, 2022, 2, 271-284.                                                                                             | 2.9  | 6         |
| 282 | Metabolomics-Driven Elucidation of Interactions between Saccharomyces cerevisiae and<br>Lactobacillus panis from Chinese Baijiu Fermentation Microbiome. Fermentation, 2022, 8, 33.                                              | 3.0  | 6         |
| 283 | UvrA expression of Lactococcus lactis NZ9000 improve multiple stresses tolerance and fermentation of lactic acid against salt stress. Journal of Food Science and Technology, 2017, 54, 639-649.                                 | 2.8  | 5         |
| 284 | Evaluation and application of constitutive promoters for cutinase production by Saccharomyces cerevisiae. Journal of Microbiology, 2017, 55, 538-544.                                                                            | 2.8  | 5         |
| 285 | Combinatorial strategy towards the efficient expression of lipoxygenase in Escherichia coli at elevated temperatures. Applied Microbiology and Biotechnology, 2020, 104, 10047-10057.                                            | 3.6  | 5         |
| 286 | Combinatorial Metabolic Engineering and Enzymatic Catalysis Enable Efficient Production of Colanic<br>Acid. Microorganisms, 2022, 10, 877.                                                                                       | 3.6  | 5         |
| 287 | Modifying the Substrate Specificity of Keratinase for Industrial Dehairing to Replace Lime-Sulfide. ACS<br>Sustainable Chemistry and Engineering, 2022, 10, 6863-6870.                                                           | 6.7  | 5         |
| 288 | Comparative study of L-phenylalanine production in the growing and stationary phases during high<br>cell density cultivation of an auxotrophic Escherichia coli. Biotechnology and Bioprocess<br>Engineering, 2011, 16, 916-922. | 2.6  | 4         |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Secretory expression of the rat aryl sulfotransferases IV with improved catalytic efficiency by molecular engineering. 3 Biotech, 2019, 9, 246.                                                                                               | 2.2 | 4         |
| 290 | An efficient thermostabilization strategy based on self-assembling amphipathic peptides for fusion tags. Enzyme and Microbial Technology, 2019, 121, 68-77.                                                                                   | 3.2 | 4         |
| 291 | Site-directed mutagenesis to improve the thermostability of tyrosine phenol-lyase. Journal of<br>Biotechnology, 2020, 310, 6-12.                                                                                                              | 3.8 | 4         |
| 292 | Improving production of Streptomyces griseus trypsin for enzymatic processing of insulin precursor.<br>Microbial Cell Factories, 2020, 19, 88.                                                                                                | 4.0 | 4         |
| 293 | Synthetic biology-driven microbial production of folates: Advances and perspectives. Bioresource Technology, 2021, 324, 124624.                                                                                                               | 9.6 | 4         |
| 294 | Enzymatic production of N-acetylneuraminic acid: advances and perspectives. Systems Microbiology and Biomanufacturing, 2022, 2, 130-146.                                                                                                      | 2.9 | 4         |
| 295 | Semi-rational design of L-amino acid deaminase for production of pyruvate and d-alanine by Escherichia coli whole-cell biocatalyst. Amino Acids, 2021, 53, 1361-1371.                                                                         | 2.7 | 4         |
| 296 | Enhanced 2,5-Furandicarboxylic Acid (FDCA) Production in BF60 by Manipulation of the Key Genes in FDCA Biosynthesis Pathway. Journal of Microbiology and Biotechnology, 2018, 28, 1999-2008.                                                  | 2.1 | 4         |
| 297 | [NiFe] Hydrogenase Accessory Proteins HypB–HypC Accelerate Proton Conversion to Enhance the Acid<br>Resistance and <scp>d</scp> -Lactic Acid Production of <i>Escherichia coli</i> . ACS Synthetic Biology,<br>2022, 11, 1521-1530.           | 3.8 | 4         |
| 298 | High-Level 5-Methyltetrahydrofolate Bioproduction in <i>Bacillus subtilis</i> by Combining Modular<br>Engineering and Transcriptomics-Guided Global Metabolic Regulation. Journal of Agricultural and<br>Food Chemistry, 2022, 70, 5849-5859. | 5.2 | 4         |
| 299 | Statistical model based optimization of spore production by solid-state culture of <i>Beauveria bassiana</i> . Biocontrol Science and Technology, 2010, 20, 1087-1095.                                                                        | 1.3 | 3         |
| 300 | Roles of tryptophan residue and disulfide bond in the variable lid region of oxidized polyvinyl alcohol<br>hydrolase. Biochemical and Biophysical Research Communications, 2014, 452, 509-514.                                                | 2.1 | 3         |
| 301 | Scarless assembly of unphosphorylated DNA fragments with a simplified DATEL method. Bioengineered, 2017, 8, 296-301.                                                                                                                          | 3.2 | 3         |
| 302 | Bioaugmentation with Mixed Hydrogen-Producing Acetogen Cultures Enhances Methane Production in Molasses Wastewater Treatment. Archaea, 2018, 2018, 1-10.                                                                                      | 2.3 | 3         |
| 303 | Microbiome analysis and random forest algorithm-aided identification of the diacetyl-producing microorganisms in the stacking fermentation stage of Maotai-flavor liquor production. Food Biotechnology, 2019, 33, 338-352.                   | 1.5 | 3         |
| 304 | Enzyme assembly guided by SPFHâ€induced functional inclusion bodies for enhanced cascade<br>biocatalysis. Biotechnology and Bioengineering, 2020, 117, 1446-1457.                                                                             | 3.3 | 3         |
| 305 | CityApps: A bioinformatics tool for predicting the key residues of enzymes weakly interacting with monovalent metal ions. Process Biochemistry, 2021, 104, 76-82.                                                                             | 3.7 | 3         |
| 306 | Efficient Bioproduction of Human Milk Alpha-Lactalbumin in <i>Komagataella phaffii</i> . Journal of<br>Agricultural and Food Chemistry, 2022, 70, 2664-2672.                                                                                  | 5.2 | 3         |

| #   | Article                                                                                                                                                                                                                        | IF                | CITATIONS          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 307 | Improving Catalytic Activity and Thermal Stability of Methyl-Parathion Hydrolase for Degrading the<br>Pesticide of Methyl-Parathion. International Journal of Chemical Engineering, 2022, 2022, 1-10.                          | 2.4               | 3                  |
| 308 | Metabolite-based cell sorting workflow for identifying microbes producing carbonyls in tobacco<br>leaves. Applied Microbiology and Biotechnology, 2022, 106, 4199-4209.                                                        | 3.6               | 3                  |
| 309 | Effects and statistical optimization of fermentation conditions on growth and poly (vinyl) Tj ETQq1 1 0.784314<br>Biotransformation, 2008, 26, 430-436.                                                                        | rgBT /Over<br>2.0 | lock 10 Tf 50<br>2 |
| 310 | Statistical modeling and optimization for enhanced hyaluronic acid production by batch culture of<br>Sreptococcus zooepidemicus via the supplement of uracil. Frontiers of Chemical Engineering in China,<br>2009, 3, 351-356. | 0.6               | 2                  |
| 311 | Synthesis and antitumor activity of cyclic octapeptide, samoamide A, and its derivatives. Medicinal<br>Chemistry Research, 2019, 28, 768-777.                                                                                  | 2.4               | 2                  |
| 312 | Insight into subtilisin E-S7 cleavage pattern based on crystal structure and hydrolysates peptide analysis. Biochemical and Biophysical Research Communications, 2019, 512, 623-628.                                           | 2.1               | 2                  |
| 313 | Structural Characterization of a Minimal Antibody against Human APOBEC3B. Viruses, 2021, 13, 663.                                                                                                                              | 3.3               | 2                  |
| 314 | Transcriptional regulator XYR1 activates the expression of cellobiose synthase to promote the production of cellulase from glucose. Biotechnology Letters, 2018, 40, 973-979.                                                  | 2.2               | 1                  |
| 315 | DNA Assembly with the DATEL Method. Methods in Molecular Biology, 2018, 1772, 421-428.                                                                                                                                         | 0.9               | 1                  |
| 316 | A CRISPR-Cas12a-Based Assay for Efficient Quantification of Lactobacillus panis in Chinese Baijiu<br>Brewing Microbiome. Fermentation, 2022, 8, 88.                                                                            | 3.0               | 1                  |
| 317 | Improved Productivity of Streptomyces mobaraensis Transglutaminase by Regulating Zymogen<br>Activation. Frontiers in Bioengineering and Biotechnology, 2022, 10, 878795.                                                       | 4.1               | 1                  |
| 318 | Enhanced Hyaluronic Acid Production ofStreptococcus zooepidemicusby Shifting Dissolved Oxygen<br>Level Based on Broth Rheology and Oxygen Mass Transfer Characteristics. Food Biotechnology, 2009,<br>23, 148-161.             | 1.5               | 0                  |
| 319 | Combinatorial Evolution of DNA with RECODE. Methods in Molecular Biology, 2018, 1772, 205-212.                                                                                                                                 | 0.9               | 0                  |
| 320 | Cover Image, Volume 116, Number 1, January 2019. Biotechnology and Bioengineering, 2019, 116, ii.                                                                                                                              | 3.3               | 0                  |