
## Karl E Havens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3960106/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Controlling Eutrophication: Nitrogen and Phosphorus. Science, 2009, 323, 1014-1015.                                                                                                         | 12.6 | 2,998     |
| 2  | Lake responses to reduced nutrient loading - an analysis of contemporary long-term data from 35 case studies. Freshwater Biology, 2005, 50, 1747-1771.                                      | 2.4  | 1,080     |
| 3  | Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research<br>Letters, 2015, 42, 10,773.                                                               | 4.0  | 767       |
| 4  | Allied attack: climate change and eutrophication. Inland Waters, 2011, 1, 101-105.                                                                                                          | 2.2  | 548       |
| 5  | lt Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect<br>Lakes and Downstream Ecosystems. Environmental Science & Technology, 2016, 50, 10805-10813. | 10.0 | 483       |
| 6  | Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae, 2016, 54, 213-222.                              | 4.8  | 453       |
| 7  | N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environmental Pollution, 2003, 122, 379-390.              | 7.5  | 330       |
| 8  | Cyanobacteria blooms: effects on aquatic ecosystems. Advances in Experimental Medicine and Biology, 2008, 619, 733-747.                                                                     | 1.6  | 176       |
| 9  | Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: variation with trophic status. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 348-361.     | 1.4  | 155       |
| 10 | Light availability as a possible regulator of cyanobacteria species composition in a shallow subtropical lake. Freshwater Biology, 1998, 39, 547-556.                                       | 2.4  | 139       |
| 11 | Trophic position and individual feeding histories of fish from Lake Okeechobee, Florida. Canadian<br>Journal of Fisheries and Aquatic Sciences, 1999, 56, 590-600.                          | 1.4  | 111       |
| 12 | Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA.<br>Aquatic Botany, 2004, 78, 67-82.                                                        | 1.6  | 108       |
| 13 | Relationships between phytoplankton dynamics and the availability of light and nutrients in a shallow sub-tropical lake. Journal of Plankton Research, 1997, 19, 319-342.                   | 1.8  | 107       |
| 14 | Mitigating eutrophication and toxic cyanobacterial blooms in large lakes:ÂThe evolution of a dual<br>nutrient (N and P) reduction paradigm. Hydrobiologia, 2020, 847, 4359-4375.            | 2.0  | 100       |
| 15 | Zooplankton community responses to chemical stressors: A comparison of results from acidification and pesticide contamination research. Environmental Pollution, 1993, 82, 277-288.         | 7.5  | 91        |
| 16 | Title is missing!. Hydrobiologia, 2003, 493, 173-186.                                                                                                                                       | 2.0  | 87        |
| 17 | Simple Graphical Methods for the Interpretation of Relationships Between Trophic State Variables.<br>Lake and Reservoir Management, 2005, 21, 107-118.                                      | 1.3  | 85        |

Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake) Tj ETQq000 rgBT/Qverlock 10 Tf 50 6

KARL E HAVENS

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Zooplankton–phytoplankton relationships in shallow subtropical versus temperate lakes Apopka<br>(Florida, USA) and Trasimeno (Umbria, Italy). Hydrobiologia, 2009, 628, 165-175.               | 2.0  | 77        |
| 20 | Nutrient-chlorophyll-Secchi relationships under contrasting grazer communities of temperate versus subtropical lakes. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 1652-1662. | 1.4  | 75        |
| 21 | Climate Change at a Crossroad for Control of Harmful Algal Blooms. Environmental Science &<br>Technology, 2015, 49, 12605-12606.                                                               | 10.0 | 75        |
| 22 | Extreme Weather Events and Climate Variability Provide a Lens to How Shallow Lakes May Respond to Climate Change. Water (Switzerland), 2016, 8, 229.                                           | 2.7  | 73        |
| 23 | Hurricane Effects on a Shallow Lake Ecosystem and Its Response to a Controlled Manipulation of<br>Water Level. Scientific World Journal, The, 2001, 1, 44-70.                                  | 2.1  | 65        |
| 24 | Mitigating a global expansion of toxic cyanobacterial blooms: confounding effects and challenges posed by climate change. Marine and Freshwater Research, 2020, 71, 579.                       | 1.3  | 63        |
| 25 | Dynamics of cyanobacteria blooms are linked to the hydrology of shallow Florida lakes and provide insight into possible impacts of climate change. Hydrobiologia, 2019, 829, 43-59.            | 2.0  | 59        |
| 26 | Development of a Total Phosphorus Concentration Goal in the TMDL Process for Lake Okeechobee,<br>Florida (USA). Lake and Reservoir Management, 2002, 18, 227-238.                              | 1.3  | 57        |
| 27 | Phosphorus dynamics at multiple time scales in the pelagic zone of a large shallow lake in Florida,<br>USA. Hydrobiologia, 2007, 581, 25-42.                                                   | 2.0  | 56        |
| 28 | Composition, size, and biomass of zooplankton in large productive Florida lakes. Hydrobiologia, 2011, 668, 49-60.                                                                              | 2.0  | 56        |
| 29 | Temperature effects on body size of freshwater crustacean zooplankton from Greenland to the tropics. Hydrobiologia, 2015, 743, 27-35.                                                          | 2.0  | 53        |
| 30 | Experimental studies of zooplankton–phytoplankton–nutrient interactions in a large subtropical<br>lake (Lake Okeechobee, Florida, U.S.A.). Freshwater Biology, 1996, 36, 579-597.              | 2.4  | 50        |
| 31 | Aquatic vegetation and largemouth bass population responses to water-level variations in Lake<br>Okeechobee, Florida (USA). Hydrobiologia, 2005, 539, 225-237.                                 | 2.0  | 50        |
| 32 | Extreme weather events influence the phytoplankton community structure in a large lowland subtropical lake (Lake Okeechobee, Florida, USA). Hydrobiologia, 2013, 709, 213-226.                 | 2.0  | 47        |
| 33 | How important is bacterial carbon to planktonic grazers in a turbid, subtropical lake?. Journal of Plankton Research, 2005, 27, 357-372.                                                       | 1.8  | 46        |
| 34 | Dynamics of the exotic Daphnia lumholtzii and native macro-zooplankton in a subtropical chain-of-lakes in Florida, U.S.A Freshwater Biology, 2000, 45, 21-32.                                  | 2.4  | 45        |
| 35 | Ecological Responses of a Large Shallow Lake (Okeechobee, Florida) to Climate Change and Potential<br>Future Hydrologic Regimes. Environmental Management, 2015, 55, 763-775.                  | 2.7  | 44        |
| 36 | Phosphorus kinetics of planktonic and benthic assemblages in a shallow subtropical lake. Freshwater<br>Biology, 1998, 40, 729-745.                                                             | 2.4  | 43        |

KARL E HAVENS

| #  | Article                                                                                                                                                                                                                                                           | IF          | CITATIONS      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|
| 37 | Lake Okeechobee conceptual ecological model. Wetlands, 2005, 25, 908-925.                                                                                                                                                                                         | 1.5         | 43             |
| 38 | Experimental studies on the recovery potential of submerged aquatic vegetation after flooding and desiccation in a large subtropical lake. Aquatic Botany, 2003, 77, 135-151.                                                                                     | 1.6         | 40             |
| 39 | Seasonal and spatial variation in zooplankton community structure and their relation to possible controlling variables in Lake Okeechobee. Freshwater Biology, 1996, 36, 45-56.                                                                                   | 2.4         | 39             |
| 40 | A review of littoral vegetation, fisheries, and wildlife responses to hydrologic variation at Lake<br>Okeechobee. Wetlands, 2007, 27, 110-126.                                                                                                                    | 1.5         | 39             |
| 41 | Ecological Responses of Lakes to Climate Change. Water (Switzerland), 2018, 10, 917.                                                                                                                                                                              | 2.7         | 38             |
| 42 | Toward predicting climate change effects on lakes: a comparison of 1656 shallow lakes from Florida<br>and Denmark reveals substantial differences in nutrient dynamics, metabolism, trophic structure, and<br>top-down control. Inland Waters, 2020, 10, 197-211. | 2.2         | 38             |
| 43 | Title is missing!. Hydrobiologia, 2001, 448, 11-18.                                                                                                                                                                                                               | 2.0         | 36             |
| 44 | Seasonal and spatial variation in nutrient limitation in a shallow sub-tropical lake (Lake Okeechobee,) Tj ETQq0 (                                                                                                                                                | ) 0 rgBT /0 | Overlock 10 Tf |
| 45 | Phosphorus kinetics of planktonic and benthic assemblages in a shallow subtropical lake. Freshwater<br>Biology, 1998, 40, 729-745.                                                                                                                                | 2.4         | 33             |
| 46 | Acidification Effects on the Algal–Zooplankton Interface. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49, 2507-2514.                                                                                                                                | 1.4         | 32             |
| 47 | The influence of environmental variables and a managed water recession on the growth of charophytes in a large, subtropical lake. Aquatic Botany, 2002, 72, 297-313.                                                                                              | 1.6         | 31             |
| 48 | Carbon dynamics in the â€~grazing food chain' of a subtropical lake. Journal of Plankton Research, 1997,<br>19, 1687-1711.                                                                                                                                        | 1.8         | 27             |
| 49 | Zooplankton to phytoplankton biomass ratios in shallow Florida lakes: an evaluation of seasonality and hypotheses about factors controlling variability. Hydrobiologia, 2013, 703, 177-187.                                                                       | 2.0         | 25             |
| 50 | Zooplankton response to extreme drought in a large subtropical lake. Hydrobiologia, 2007, 589,<br>187-198.                                                                                                                                                        | 2.0         | 24             |
| 51 | Inter-lake comparisons indicate that fish predation, rather than high temperature, is the major driver<br>of summer decline in Daphnia and other changes among cladoceran zooplankton in subtropical<br>Florida lakes. Hydrobiologia, 2015, 750, 57-67.           | 2.0         | 24             |
| 52 | Contrasting Relationships Between Nutrients, Chlorophyllaand Secchi Transparency in Two Shallow<br>Subtropical Lakes: Lakes Okeechobee and Apopka (Florida, USA). Lake and Reservoir Management, 1999,<br>15, 298-309.                                            | 1.3         | 23             |
| 53 | Water Levels and Total Phosphorus in Lake Okeechobee. Lake and Reservoir Management, 1997, 13, 16-25.                                                                                                                                                             | 1.3         | 22             |
| 54 | Effects of climate variability on cladoceran zooplankton and cyanobacteria in a shallow subtropical<br>lake. Journal of Plankton Research, 2016, 38, 418-430.                                                                                                     | 1.8         | 22             |

KARL E HAVENS

| #  | Article                                                                                                                                                                                        | lF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The Managed Recession of Lake Okeechobee, Florida: Integrating Science and Natural Resource<br>Management. Ecology and Society, 2002, 6, .                                                     | 0.9  | 22        |
| 56 | Large-Scale Mapping and Predictive Modeling of Submerged Aquatic Vegetation in a Shallow Eutrophic<br>Lake. Scientific World Journal, The, 2002, 2, 949-965.                                   | 2.1  | 21        |
| 57 | Localized Changes in Transparency Linked to Mud Sediment Expansion in Lake Okeechobee, Florida:<br>Ecological and Management Implications. Lake and Reservoir Management, 1999, 15, 54-69.     | 1.3  | 20        |
| 58 | Plankton biomass partitioning in a eutrophic subtropical lake: comparison with results from temperate lake ecosystems. Journal of Plankton Research, 2007, 29, 1087-1097.                      | 1.8  | 19        |
| 59 | Predicting Ecological Responses of the Florida Everglades to Possible Future Climate Scenarios:<br>Introduction. Environmental Management, 2015, 55, 741-748.                                  | 2.7  | 18        |
| 60 | Comparative analysis of Lake Periphyton communities using high performance liquid chromatography<br>(HPLC) and light microscope counts. Aquatic Sciences, 1999, 61, 307.                       | 1.5  | 17        |
| 61 | Recovery of plankton from hurricane impacts in a large shallow lake. Freshwater Biology, 2018, 63,<br>366-379.                                                                                 | 2.4  | 17        |
| 62 | Multiyear oscillations in depth affect water quality in Lake Apopka. Inland Waters, 2018, 8, 1-9.                                                                                              | 2.2  | 17        |
| 63 | Body size versus taxonomy in relating zooplankton to water quality in lakes. Inland Waters, 2011, 1, 107-112.                                                                                  | 2.2  | 13        |
| 64 | Water Quality Trends in Shallow South Florida Lakes and Assessment of Regional Versus Local<br>Forcing Functions. Critical Reviews in Environmental Science and Technology, 2011, 41, 576-607. | 12.8 | 11        |
| 65 | Development and Application of Hydrologic Restoration Goals for a Large Subtropical Lake. Lake and<br>Reservoir Management, 2002, 18, 285-292.                                                 | 1.3  | 10        |
| 66 | Response of Zooplankton to Climate Variability: Droughts Create a Perfect Storm for Cladocerans in<br>Shallow Eutrophic Lakes. Water (Switzerland), 2017, 9, 764.                              | 2.7  | 7         |
| 67 | Periods of Extreme Shallow Depth Hinder but Do Not Stop Long-Term Improvements of Water Quality<br>in Lake Apopka, Florida (USA). Water (Switzerland), 2019, 11, 538.                          | 2.7  | 6         |
| 68 | Plankton Food Web Responses to Experimental Nutrient Additions in a Subtropical Lake. Scientific<br>World Journal, The, 2006, 6, 827-833.                                                      | 2.1  | 5         |
| 69 | Revisiting the total maximum daily load total phosphorus goal in Lake Okeechobee. Hydrobiologia,<br>2020, 847, 4221-4232.                                                                      | 2.0  | 5         |
| 70 | Predicting impacts of an invading copepod by ecological assessment in the animal's native range.<br>Inland Waters, 2014, 4, 49-56.                                                             | 2.2  | 3         |
| 71 | Inferences about seston composition and phytoplankton limiting factors during recovery of a large shallow lake from hurricane impacts. Inland Waters, 2017, 7, 236-247.                        | 2.2  | 1         |