Raquel L Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3958470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Arabidopsis transcription factors AtPHL1 and AtHB23 act together promoting carbohydrate transport from pedicel-silique nodes to seeds. Plant Science, 2022, 315, 111133.	3.6	3
2	Expressing the sunflower transcription factor HaHB11 in maize improves waterlogging and defoliation tolerance. Plant Physiology, 2022, 189, 230-247.	4.8	7
3	The transcription factor AtHB23 modulates starch turnover for root development and plant survival under salinity. Environmental and Experimental Botany, 2022, 201, 104994.	4.2	4
4	The underground life of homeodomain-leucine zipper transcription factors. Journal of Experimental Botany, 2021, 72, 4005-4021.	4.8	21
5	The AtHB1 Transcription Factor Controls the miR164-CUC2 Regulatory Node to Modulate Leaf Development. Plant and Cell Physiology, 2020, 61, 659-670.	3.1	15
6	Key role of the motor protein Kinesin 13B in the activity of homeodomain-leucine zipper I transcription factors. Journal of Experimental Botany, 2020, 71, 6282-6296.	4.8	4
7	Why are second-generation transgenic crops not yet available in the market?. Journal of Experimental Botany, 2020, 71, 6876-6880.	4.8	13
8	An Interdisciplinary Approach to Study the Performance of Second-generation Genetically Modified Crops in Field Trials: A Case Study With Soybean and Wheat Carrying the Sunflower HaHB4 Transcription Factor. Frontiers in Plant Science, 2020, 11, 178.	3.6	26
9	Successful field performance in warm and dry environments of soybean expressing the sunflower transcription factor HB4. Journal of Experimental Botany, 2020, 71, 3142-3156.	4.8	41
10	Lateral root development differs between main and secondary roots and depends on the ecotype. Plant Signaling and Behavior, 2020, 15, 1755504.	2.4	9
11	Maize expressing the sunflower transcription factor HaHB11 has improved productivity in controlled and field conditions. Plant Science, 2019, 287, 110185.	3.6	9
12	AtHB23 participates in the gene regulatory network controlling root branching, and reveals differences between secondary and tertiary roots. Plant Journal, 2019, 100, 1224-1236.	5.7	24
13	Arabidopsis and sunflower plants with increased xylem area show enhanced seed yield. Plant Journal, 2019, 99, 717-732.	5.7	13
14	Field-grown transgenic wheat expressing the sunflower gene <i>HaHB4</i> significantly outyields the wild type. Journal of Experimental Botany, 2019, 70, 1669-1681.	4.8	78
15	<i>Arabidopsis thaliana homeodomain-leucine zipper type I</i> transcription factors contribute to control leaf venation patterning. Plant Signaling and Behavior, 2018, 13, e1448334.	2.4	6
16	The antagonistic basic helix-loop-helix partners BEE and IBH1 contribute to control plant tolerance to abiotic stress. Plant Science, 2018, 271, 143-150.	3.6	17
17	Plant transcription factors from the homeodomainâ€ l eucine zipper family I. Role in development and stress responses. IUBMB Life, 2017, 69, 280-289.	3.4	63
18	A uORF Represses the Transcription Factor AtHB1 in Aerial Tissues to Avoid a Deleterious Phenotype. Plant Physiology, 2017, 175, 1238-1253.	4.8	40

#	Article	IF	CITATIONS
19	A role for LAX2 in regulating xylem development and lateral-vein symmetry in the leaf. Annals of Botany, 2017, 120, 577-590.	2.9	33
20	The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants. Journal of Biotechnology, 2017, 257, 35-46.	3.8	28
21	JUNGBRUNNEN1 Confers Drought Tolerance Downstream of the HD-Zip I Transcription Factor AtHB13. Frontiers in Plant Science, 2017, 8, 2118.	3.6	55
22	A Predictive Coexpression Network Identifies Novel Genes Controlling the Seed-to-Seedling Phase Transition in <i>Arabidopsis thaliana</i> . Plant Physiology, 2016, 170, 2218-2231.	4.8	83
23	A sunflower WRKY transcription factor stimulates the mobilization of seed-stored reserves during germination and post-germination growth. Plant Cell Reports, 2016, 35, 1875-1890.	5.6	27
24	A matter of quantity: Common features in the drought response of transgenic plants overexpressing HD-Zip I transcription factors. Plant Science, 2016, 251, 139-154.	3.6	28
25	The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants. Journal of Biotechnology, 2016, 222, 73-83.	3.8	42
26	Homeodomain–Leucine Zipper Transcription Factors: Structural Features of These Proteins, Unique to Plants. , 2016, , 113-126.		6
27	What Do We Know about Homeodomain–Leucine Zipper I Transcription Factors? Functional and Biotechnological Considerations. , 2016, , 343-356.		3
28	<i>Arabidopsis thaliana</i> HomeoBox 1 (At <scp>HB</scp> 1), a Homedomain‣eucine Zipper I (<scp>HD</scp> â€Zip I) transcription factor, is regulated by PHYTOCHROMEâ€INTERACTING FACTOR 1 to promote hypocotyl elongation. New Phytologist, 2015, 207, 669-682.	7.3	69
29	Functional characterization of the homeodomain leucine zipper I transcription factor AtHB13 reveals a crucial role in <i>Arabidopsis</i> development. Journal of Experimental Botany, 2015, 66, 5929-5943.	4.8	48
30	The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress. Plant Molecular Biology, 2015, 88, 401-413.	3.9	92
31	The sunflower transcription factor HaWRKY76 confers drought and flood tolerance to Arabidopsis thaliana plants without yield penalty. Plant Cell Reports, 2015, 34, 2065-2080.	5.6	60
32	Plant science with relevance to biotechnology. Journal of Biotechnology, 2014, 174, iv.	3.8	1
33	Plant homeodomain-leucine zipper I transcription factors exhibit different functional AHA motifs that selectively interact with TBP or/and TFIIB. Plant Cell Reports, 2014, 33, 955-967.	5.6	42
34	Arabidopsis AtHB7 and AtHB12evolved divergently to fine tune processes associated with growth and responses to water stress. BMC Plant Biology, 2014, 14, 150.	3.6	120
35	Two Direct Targets of Cytokinin Signaling Regulate Symbiotic Nodulation in <i>Medicago truncatula</i> À Â. Plant Cell, 2012, 24, 3838-3852.	6.6	136
36	Role of recently evolved miRNA regulation of sunflower <i>HaWRKY6</i> in response to temperature damage. New Phytologist, 2012, 195, 766-773.	7.3	118

#	Article	IF	CITATIONS
37	RNAi-mediated silencing of the HD-Zip gene HD20 in Nicotiana attenuata affects benzyl acetone emission from corollas via ABA levels and the expression of metabolic genes. BMC Plant Biology, 2012, 12, 60.	3.6	16
38	The homologous HDâ€Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesisâ€related and glucanase proteins. Plant Journal, 2012, 69, 141-153.	5.7	80
39	The homologous homeodomainâ€leucine zipper transcription factors HaHB1 and AtHB13 confer tolerance to drought and salinity stresses via the induction of proteins that stabilize membranes. Plant Biotechnology Journal, 2012, 10, 815-825.	8.3	75
40	Uncharacterized conserved motifs outside the HD-Zip domain in HD-Zip subfamily I transcription factors; a potential source of functional diversity. BMC Plant Biology, 2011, 11, 42.	3.6	70
41	HAHB10, a sunflower HD-Zip II transcription factor, participates in the induction of flowering and in the control of phytohormone-mediated responses to biotic stress. Journal of Experimental Botany, 2011, 62, 1061-1076.	4.8	68
42	Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions. Journal of Experimental Botany, 2011, 62, 155-166.	4.8	40
43	The LOB-like transcription factor MtLBD1 controls <i>Medicago truncatula</i> root architecture under salt stress. Plant Signaling and Behavior, 2010, 5, 1666-1668.	2.4	39
44	Transcriptional Control of a Plant Stem Cell Niche. Developmental Cell, 2010, 18, 841-853.	7.0	221
45	Expression analyses indicate the involvement of sunflower WRKY transcription factors in stress responses, and phylogenetic reconstructions reveal the existence of a novel clade in the Asteraceae. Plant Science, 2010, 178, 398-410.	3.6	32
46	Environmental Regulation of Lateral Root Emergence in <i>Medicago truncatula</i> Requires the HD-Zip I Transcription Factor HB1. Plant Cell, 2010, 22, 2171-2183.	6.6	156
47	Transient transformation of sunflower leaf discs via an Agrobacterium-mediated method: applications for gene expression and silencing studies. Nature Protocols, 2009, 4, 1699-1707.	12.0	54
48	Two ABREs, two redundant root-specific and one W-box cis-acting elements are functional in the sunflower HAHB4 promoter. Plant Physiology and Biochemistry, 2008, 46, 860-867.	5.8	21
49	HAHB4, a sunflower HDâ€Zip protein, integrates signals from the jasmonic acid and ethylene pathways during wounding and biotic stress responses. Plant Journal, 2008, 56, 376-388.	5.7	85
50	The sunflower HD-Zip transcription factor HAHB4 is up-regulated in darkness, reducing the transcription of photosynthesis-related genes. Journal of Experimental Botany, 2008, 59, 3143-3155.	4.8	36
51	Patents on Plant Transcription Factors. Recent Patents on Biotechnology, 2008, 2, 209-217.	0.8	17
52	The true story of the HD-Zip family. Trends in Plant Science, 2007, 12, 419-426.	8.8	508
53	The intron of the Arabidopsis thaliana COX5c gene is able to improve the drought tolerance conferred by the sunflower Hahb-4 transcription factor. Planta, 2007, 226, 1143-1154.	3.2	25
54	Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant Journal, 2006, 48, 125-137.	5.7	169

#	Article	IF	CITATIONS
55	Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants. Transgenic Research, 2005, 14, 429-440.	2.4	134
56	The leader intron of Arabidopsis thaliana genes encoding cytochrome c oxidase subunit 5c promotes high-level expression by increasing transcript abundance and translation efficiency. Journal of Experimental Botany, 2005, 56, 2563-2571.	4.8	51
57	Hahb-10, a Sunflower Homeobox-Leucine Zipper Gene, is Regulated by Light Quality and Quantity, and Promotes Early Flowering when Expressed in Arabidopsis. Plant and Cell Physiology, 2005, 46, 1954-1963.	3.1	46
58	The promoter of the sunflower HD-Zip protein gene Hahb4 directs tissue-specific expression and is inducible by water stress, high salt concentrations and ABA. Plant Science, 2005, 169, 447-456.	3.6	36
59	Site-directed mutagenesis and footprinting analysis of the interaction of the sunflower KNOX protein HAKN1 with DNA. FEBS Journal, 2005, 272, 190-202.	4.7	7
60	The promoter of the Arabidopsis nuclear gene COX5b-1, encoding subunit 5b of the mitochondrial cytochrome c oxidase, directs tissue-specific expression by a combination of positive and negative regulatory elements. Journal of Experimental Botany, 2004, 55, 1997-2004.	4.8	33
61	Site-directed mutagenesis and footprinting analysis of the interaction of the sunflower KNOX protein HAKN1 with DNA. FEBS Journal, 2004, 272, 190-202.	4.7	15
62	Homeodomain-leucine Zipper Proteins Interact with a Plant Homologue of the Transcriptional Co-activator Multiprotein Bridging Factor 1. BMB Reports, 2004, 37, 320-334.	2.4	6
63	Nuclear and mitochondrial genes encoding cytochrome c oxidase subunits respond differently to the same metabolic factors. Plant Physiology and Biochemistry, 2003, 41, 689-693.	5.8	24
64	Knotted1-like genes are strongly expressed in differentiated cell types in sunflower. Journal of Experimental Botany, 2003, 54, 681-690.	4.8	13
65	Identification of three MADS-box genes expressed in sunflower capitulum. Journal of Experimental Botany, 2003, 54, 1637-1639.	4.8	16
66	Redox Regulation of Plant Homeodomain Transcription Factors. Journal of Biological Chemistry, 2002, 277, 34800-34807.	3.4	86
67	Genes encoding cytochrome c oxidase subunit 5c from sunflower (Helianthus annuus L.) are regulated by nitrate and oxygen availability. Plant Science, 2002, 163, 897-905.	3.6	10
68	Hahb-4 , a homeobox-leucine zipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflower*. Plant, Cell and Environment, 2002, 25, 633-640.	5.7	84
69	Metabolic regulation of genes encoding cytochrome c and cytochrome c oxidase subunit Vb in Arabidopsis. Plant, Cell and Environment, 2002, 25, 1605-1615.	5.7	37
70	Positively charged residues at the N-terminal arm of the homeodomain are required for efficient DNA binding by homeodomain-leucine zipper proteins11Edited by M. Yaniv. Journal of Molecular Biology, 2001, 308, 39-47.	4.2	37
71	Combinatorial interactions of two amino acids with a single base pair define target site specificity in plant dimeric homeodomain proteins. Nucleic Acids Research, 2001, 29, 4866-4872.	14.5	36
72	Cell-Type-Specific Expression of Plant Cytochrome cmRNA in Developing Flowers and Roots. Plant Physiology, 2001, 125, 1603-1610.	4.8	23

#	Article	IF	CITATIONS
73	The Cytochrome c Gene from the Green Alga Chlamydomonas reinhardtii. Structure and Expression in Wild-Type Cells and in Obligate Photoautotrophic (dk) Mutants. Plant and Cell Physiology, 2000, 41, 1149-1156.	3.1	7
74	A monomer–dimer equilibrium modulates the interaction of the sunflower homeodomain leucine-zipper protein Hahb-4 with DNA. Biochemical Journal, 1999, 341, 81-87.	3.7	68
75	A monomer‒dimer equilibrium modulates the interaction of the sunflower homeodomain leucine-zipper protein Hahb-4 with DNA. Biochemical Journal, 1999, 341, 81.	3.7	51
76	Homeoboxes in plant development. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1442, 1-19.	2.4	192
77	Expression of Sunflower Homeodomain Containing Proteins inEscherichia coli:Purification and Functional Studies. Protein Expression and Purification, 1998, 13, 97-103.	1.3	22
78	Isolation and expression pattern of hahr1, a homeobox-containing cDNA from Helianthus annuus. Gene, 1997, 196, 61-68.	2.2	16
79	Expression of sunflower cytochrome c mRNA is tissue-specific and controlled by nitrate and light. Physiologia Plantarum, 1997, 99, 342-347.	5.2	11
80	Interaction between proteins containing homeodomains associated to leucine zippers from sunflower. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1351, 137-149.	2.4	29
81	A novel type of dimerization motif, related to leucine zippers, is present in plant homeodomain proteins. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1352, 203-212.	2.4	9
82	Expression of sunflower cytochrome c mRNA is tissue-specific and controlled by nitrate and light. Physiologia Plantarum, 1997, 99, 342-347.	5.2	2
83	A cDNA Encoding an HD-Zip Protein from Sunflower. Plant Physiology, 1994, 106, 1687-1688.	4.8	23
84	Screening cDNA libraries by PCR using $\hat{\sf l} *$ sequencing primers and degenerate oligonucleotides. Trends in Genetics, 1993, 9, 231-232.	6.7	16
85	InEuglena, spliced-leader RNA (SL-RNA) and 5S rRNA genes are tandemly repeated. Nucleic Acids Research, 1992, 20, 1711-1715.	14.5	36
86	TheEuglena gracilis rbcSgene contains introns with unusual borders. FEBS Letters, 1992, 304, 252-255.	2.8	13
87	Post-transcriptional regulation by light of the biosynthesis ofEuglena ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit. Plant Molecular Biology, 1991, 17, 73-82.	3.9	35
88	Biosynthesis and Distribution of the Ferredoxin-NADP Oxidoreductase Binding Protein. , 1990, , 1831-1834.		0
89	Immunological studies of the binding protein for chloroplast ferredoxin-NADP+ reductase. Archives of Biochemistry and Biophysics, 1987, 253, 56-61.	3.0	17
90	Trimeric structure and other properties of the chloroplast reductase binding protein. FEBS Letters, 1985, 190, 165-168.	2.8	23

#	Article	IF	CITATIONS
91	lsolation and sequencing of an active-site peptide from spinach ferredoxin-NADP+ oxidoreductase after affinity labeling with periodate-oxidized NADP+. Archives of Biochemistry and Biophysics, 1985, 240, 172-177.	3.0	34
92	A fast and sensitive micromethod for the manual sequencing of peptides using O-phthalaldehyde as derivatizing reagent. Journal of Proteomics, 1984, 10, 49-54.	2.4	5
93	Affinity labeling of spinach ferredoxin-NADP+ oxidoreductase with periodate-oxidized NADP+. Archives of Biochemistry and Biophysics, 1984, 229, 340-347.	3.0	11