
## Anthony Convertine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3958051/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Theranostic Copolymers Neutralize Reactive Oxygen Species and Lipid Peroxidation Products for the Combined Treatment of Traumatic Brain Injury. Biomacromolecules, 2022, 23, 1703-1712.                                                                    | 5.4  | 5         |
| 2  | Antioxidant thioether core-crosslinked nanoparticles prevent the bilateral spread of secondary<br>injury to protect spatial learning and memory in a controlled cortical impact mouse model of<br>traumatic brain injury. Biomaterials, 2021, 272, 120766. | 11.4 | 25        |
| 3  | Mannose Conjugated Polymer Targeting <i>P.Âaeruginosa</i> Biofilms. ACS Infectious Diseases, 2020, 6, 2866-2871.                                                                                                                                           | 3.8  | 9         |
| 4  | Glycan targeted polymeric antibiotic prodrugs for alveolar macrophage infections. Biomaterials, 2019,<br>195, 38-50.                                                                                                                                       | 11.4 | 38        |
| 5  | Radiant star nanoparticle prodrugs for the treatment of intracellular alveolar infections. Polymer<br>Chemistry, 2018, 9, 2134-2146.                                                                                                                       | 3.9  | 9         |
| 6  | Micellization of a diâ€block copolymer in ethylene glycol and its utilization for suspension of carbonaceous nanostructures. Journal of Applied Polymer Science, 2018, 135, 46518.                                                                         | 2.6  | 0         |
| 7  | Fully synthetic macromolecular prodrug chemotherapeutics with EGFR targeting and controlled camptothecin release kinetics. Polymer Chemistry, 2018, 9, 5224-5233.                                                                                          | 3.9  | 13        |
| 8  | Polymer-augmented liposomes enhancing antibiotic delivery against intracellular infections.<br>Biomaterials Science, 2018, 6, 1976-1985.                                                                                                                   | 5.4  | 47        |
| 9  | Macrophage-targeted drugamers with enzyme-cleavable linkers deliver high intracellular drug dosing<br>and sustained drug pharmacokinetics against alveolar pulmonary infections. Journal of Controlled<br>Release, 2018, 287, 1-11.                        | 9.9  | 48        |
| 10 | Enzyme-Cleavable Polymeric Micelles for the Intracellular Delivery of Proapoptotic Peptides.<br>Molecular Pharmaceutics, 2017, 14, 1450-1459.                                                                                                              | 4.6  | 47        |
| 11 | Synthetic Macromolecular Antibiotic Platform for Inhalable Therapy against Aerosolized<br>Intracellular Alveolar Infections. Molecular Pharmaceutics, 2017, 14, 1988-1997.                                                                                 | 4.6  | 20        |
| 12 | Core-Cross-Linked Nanoparticles Reduce Neuroinflammation and Improve Outcome in a Mouse Model of Traumatic Brain Injury. ACS Nano, 2017, 11, 8600-8611.                                                                                                    | 14.6 | 91        |
| 13 | Theranostic Oxygen Reactive Polymers for Treatment of Traumatic Brain Injury. Advanced Functional<br>Materials, 2016, 26, 4124-4133.                                                                                                                       | 14.9 | 38        |
| 14 | Nanostructured glycopolymer augmented liposomes to elucidate carbohydrate-mediated targeting.<br>Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2031-2041.                                                                                 | 3.3  | 25        |
| 15 | pH and Salt Effects on Surface Activity and Self-Assembly of Copolymers Containing a Weak Polybase.<br>Langmuir, 2016, 32, 9286-9292.                                                                                                                      | 3.5  | 7         |
| 16 | Synthesis of zwitterionic, hydrophobic, and amphiphilic polymers via RAFT polymerization induced self-assembly (PISA) in acetic acid. Polymer Chemistry, 2016, 7, 6133-6143.                                                                               | 3.9  | 19        |
| 17 | Chemotherapeutic copolymers prepared via the RAFT polymerization of prodrug monomers. Polymer Chemistry, 2016, 7, 4494-4505.                                                                                                                               | 3.9  | 19        |
| 18 | RAFT polymerization of ciprofloxacin prodrug monomers for the controlled intracellular delivery of antibiotics. Polymer Chemistry, 2016, 7, 826-837.                                                                                                       | 3.9  | 45        |

ANTHONY CONVERTINE

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to<br>HER2-overexpressing cancer cells. Oncotarget, 2016, 7, 9561-9575.                                                            | 1.8  | 46        |
| 20 | Enhancement of MHC-I Antigen Presentation via Architectural Control of pH-Responsive,<br>Endosomolytic Polymer Nanoparticles. AAPS Journal, 2015, 17, 358-369.                                                       | 4.4  | 52        |
| 21 | Intracellular Delivery System for Antibody–Peptide Drug Conjugates. Molecular Therapy, 2015, 23,<br>907-917.                                                                                                         | 8.2  | 33        |
| 22 | Polymer nanostructures synthesized by controlled living polymerization for tumor-targeted drug delivery. Journal of Controlled Release, 2015, 219, 345-354.                                                          | 9.9  | 48        |
| 23 | Well-defined single polymer nanoparticles for the antibody-targeted delivery of chemotherapeutic agents. Polymer Chemistry, 2015, 6, 1286-1299.                                                                      | 3.9  | 18        |
| 24 | Dynamic intracellular delivery of antibiotics via pH-responsive polymersomes. Polymer Chemistry, 2015, 6, 1255-1266.                                                                                                 | 3.9  | 34        |
| 25 | Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8+ T cell responses. Journal of Controlled Release, 2014, 191, 24-33.                     | 9.9  | 119       |
| 26 | Synthesis and characterization of transferrin-targeted chemotherapeutic delivery systems prepared<br>via RAFT copolymerization of high molecular weight PEG macromonomers. Polymer Chemistry, 2014, 5,<br>1791-1799. | 3.9  | 27        |
| 27 | A Computationally Designed Inhibitor of an Epstein-Barr Viral Bcl-2 Protein Induces Apoptosis in<br>Infected Cells. Cell, 2014, 157, 1644-1656.                                                                      | 28.9 | 118       |
| 28 | Melittin-grafted HPMA-oligolysine based copolymers for gene delivery. Biomaterials, 2013, 34, 2318-2326.                                                                                                             | 11.4 | 57        |
| 29 | Neutral Polymeric Micelles for RNA Delivery. Bioconjugate Chemistry, 2013, 24, 398-407.                                                                                                                              | 3.6  | 42        |
| 30 | pH-Responsive Nanoparticle Vaccines for Dual-Delivery of Antigens and Immunostimulatory<br>Oligonucleotides. ACS Nano, 2013, 7, 3912-3925.                                                                           | 14.6 | 280       |
| 31 | Application of Living Free Radical Polymerization for Nucleic Acid Delivery. Accounts of Chemical Research, 2012, 45, 1089-1099.                                                                                     | 15.6 | 111       |
| 32 | Intracellular Delivery and Trafficking Dynamics of a Lymphoma-Targeting Antibody–Polymer<br>Conjugate. Molecular Pharmaceutics, 2012, 9, 3506-3514.                                                                  | 4.6  | 38        |
| 33 | Diblock copolymers with tunable pH transitions for gene delivery. Biomaterials, 2012, 33, 2301-2309.                                                                                                                 | 11.4 | 104       |
| 34 | Multifunctional triblock copolymers for intracellular messenger RNA delivery. Biomaterials, 2012, 33, 6868-6876.                                                                                                     | 11.4 | 111       |
| 35 | In vivo targeting of alveolar macrophages via RAFT-based glycopolymers. Biomaterials, 2012, 33, 6889-6897.                                                                                                           | 11.4 | 67        |
| 36 | pH-responsive polymer–antigen vaccine bioconjugates. Polymer Chemistry, 2011, 2, 1499.                                                                                                                               | 3.9  | 33        |

3

ANTHONY CONVERTINE

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|
| 37 | RAFT-synthesized graft copolymers that enhance pH-dependent membrane destabilization and protein circulation times. Journal of Controlled Release, 2011, 155, 167-174.                                                   | 9.9 | 31            |
| 38 | Anti-CD22 Antibody Targeting of pH-responsive Micelles Enhances Small Interfering RNA Delivery and<br>Gene Silencing in Lymphoma Cells. Molecular Therapy, 2011, 19, 1529-1537.                                          | 8.2 | 56            |
| 39 | Synthesis of Statistical Copolymers Containing Multiple Functional Peptides for Nucleic Acid Delivery. Biomacromolecules, 2010, 11, 3007-3013.                                                                           | 5.4 | 38            |
| 40 | Intracellular Delivery of a Proapoptotic Peptide via Conjugation to a RAFT Synthesized Endosomolytic<br>Polymer. Molecular Pharmaceutics, 2010, 7, 468-476.                                                              | 4.6 | 94            |
| 41 | pH-Responsive Polymeric Micelle Carriers for siRNA Drugs. Biomacromolecules, 2010, 11, 2904-2911.                                                                                                                        | 5.4 | 209           |
| 42 | Thermosensitive Liposomes Modified with Poly( <i>N</i> -isopropylacrylamide- <i>co</i> -propylacrylic) Tj ETQq0 0                                                                                                        | 0   | verlock 10 Tf |
| 43 | Development of a novel endosomolytic diblock copolymer for siRNA delivery. Journal of Controlled Release, 2009, 133, 221-229.                                                                                            | 9.9 | 367           |
| 44 | End-Functionalized Polymers and Junction-Functionalized Diblock Copolymers Via RAFT Chain<br>Extension with Maleimido Monomers. Bioconjugate Chemistry, 2009, 20, 1122-1128.                                             | 3.6 | 46            |
| 45 | Effect of Sequential Layer-by-Layer Surface Modifications on the Surface Energy of Plasma-Modified Poly(dimethylsiloxane). Langmuir, 2007, 23, 667-672.                                                                  | 3.5 | 20            |
| 46 | Direct Synthesis of Thermally Responsive DMA/NIPAM Diblock and DMA/NIPAM/DMA Triblock<br>Copolymers via Aqueous, Room Temperature RAFT Polymerizationâ€. Macromolecules, 2006, 39, 1724-1730.                            | 4.8 | 327           |
| 47 | Fluorescent Labeling of RAFT-Generated Poly(N-isopropylacrylamide) via a Facile Maleimideâ^'Thiol<br>Coupling Reactionâ€. Biomacromolecules, 2006, 7, 1389-1392.                                                         | 5.4 | 206           |
| 48 | Responsive Nanoassemblies via Interpolyelectrolyte Complexation of Amphiphilic Block Copolymer<br>Micelles. Macromolecules, 2006, 39, 8594-8602.                                                                         | 4.8 | 133           |
| 49 | Corona-Stabilized Interpolyelectrolyte Complexes of SiRNA with Nonimmunogenic,<br>Hydrophilic/Cationic Block Copolymers Prepared by Aqueous RAFT Polymerizationâ€. Macromolecules,<br>2006, 39, 6871-6881.               | 4.8 | 84            |
| 50 | Aqueous RAFT Polymerization of Acrylamide andN,N-Dimethylacrylamide at Room Temperature.<br>Macromolecular Rapid Communications, 2005, 26, 791-795.                                                                      | 3.9 | 104           |
| 51 | Direct, Controlled Synthesis of the Nonimmunogenic, Hydrophilic Polymer,<br>Poly(N-(2-hydroxypropyl)methacrylamide) via RAFT in Aqueous Mediaâ€. Biomacromolecules, 2005, 6,<br>1846-1850.                               | 5.4 | 182           |
| 52 | Aqueous solution properties of pH-responsive AB diblock acrylamido-styrenic copolymers synthesized via aqueous reversible addition-fragmentation chain transfer. Journal of Polymer Science Part A, 2004, 42, 1724-1734. | 2.3 | 85            |
| 53 | Facile, Controlled, Room-Temperature RAFT Polymerization ofN-Isopropylacrylamideâ€.<br>Biomacromolecules, 2004, 5, 1177-1180.                                                                                            | 5.4 | 230           |
| 54 | Hydrolytic Susceptibility of Dithioester Chain Transfer Agents and Implications in Aqueous RAFT<br>Polymerizations. Macromolecules, 2004, 37, 1735-1741.                                                                 | 4.8 | 228           |

| #  | Article                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Kinetics and Molecular Weight Control of the Polymerization of Acrylamide via RAFTâ€.<br>Macromolecules, 2004, 37, 8941-8950. | 4.8 | 151       |
| 56 | Synthesis of Block Copolymers of 2- and 4-Vinylpyridine by RAFT Polymerization. Macromolecules, 2003, 36, 4679-4681.          | 4.8 | 123       |