
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3957770/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The jasmonic acidâ€amino acid conjugates <scp>JAâ€Val</scp> and <scp>JAâ€Leu</scp> are involved in rice resistance to herbivores. Plant, Cell and Environment, 2022, 45, 262-272.	5.7	21
2	Role of jasmonate signaling in rice resistance to the leaf folder Cnaphalocrocis medinalis. Plant Molecular Biology, 2022, 109, 627-637.	3.9	11
3	Low-level cadmium exposure influences rice resistance to herbivores by priming jasmonate signaling. Environmental and Experimental Botany, 2022, 194, 104741.	4.2	1
4	Editorial: Inducing Plant Resistance Against Insects Using Exogenous Bioactive Chemicals: Key Advances and Future Perspectives. Frontiers in Plant Science, 2022, 13, 890884.	3.6	1
5	The lipoxygenase gene <i>OsRClâ€l </i> is involved in the biosynthesis of herbivoreâ€induced JAs and regulates plant defense and growth in rice. Plant, Cell and Environment, 2022, 45, 2827-2840.	5.7	10
6	Long nonâ€coding <scp>RNAs</scp> associate with jasmonateâ€mediated plant defence against herbivores. Plant, Cell and Environment, 2021, 44, 982-994.	5.7	27
7	Molecular dissection of rice phytohormone signaling involved in resistance to a piercingâ€sucking herbivore. New Phytologist, 2021, 230, 1639-1652.	7.3	72
8	Both Allene Oxide Synthases Genes Are Involved in the Biosynthesis of Herbivore-Induced Jasmonic Acid and Herbivore Resistance in Rice. Plants, 2021, 10, 442.	3.5	17
9	Evolutionary changes in an invasive plant support the defensive role of plant volatiles. Current Biology, 2021, 31, 3450-3456.e5.	3.9	22
10	Silencing a Simple Extracellular Leucine-Rich Repeat Gene OsI-BAK1 Enhances the Resistance of Rice to Brown Planthopper Nilaparvata lugens. International Journal of Molecular Sciences, 2021, 22, 12182.	4.1	4
11	Cooperative herbivory between two important pests of rice. Nature Communications, 2021, 12, 6772.	12.8	24
12	Silencing an E3 Ubiquitin Ligase Gene OsJMJ715 Enhances the Resistance of Rice to a Piercing-Sucking Herbivore by Activating ABA and JA Signaling Pathways. International Journal of Molecular Sciences, 2021, 22, 13020.	4.1	8
13	Plant-insect-microbe interaction: A love triangle between enemies in ecosystem. Science of the Total Environment, 2020, 699, 134181.	8.0	67
14	Overexpression of a Cytosolic 6-Phosphogluconate Dehydrogenase Gene Enhances the Resistance of Rice to Nilaparvata lugens. Plants, 2020, 9, 1529.	3.5	5
15	Exogenous Gibberellin GA3 Enhances Defense Responses in Rice to the Brown Planthopper Nilaparvata lugens (Stål). Journal of Plant Biology, 2020, 64, 379.	2.1	11
16	Rice stripe virus coat protein induces the accumulation of jasmonic acid, activating plant defence against the virus while also attracting its vector to feed. Molecular Plant Pathology, 2020, 21, 1647-1653.	4.2	27
17	Induction of defense in cereals by 4-fluorophenoxyacetic acid suppresses insect pest populations and increases crop yields in the field. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12017-12028.	7.1	33
18	The Desaturase Gene Nlug-desatA2 Regulates the Performance of the Brown Planthopper Nilaparvata lugens and Its Relationship with Rice. International Journal of Molecular Sciences, 2020, 21, 4143.	4.1	2

#	Article	IF	CITATIONS
19	Host plants alter their volatiles to help a solitary egg parasitoid distinguish habitats with parasitized hosts from those without. Plant, Cell and Environment, 2020, 43, 1740-1750.	5.7	13
20	Suppression of a leucineâ€rich repeat receptorâ€like kinase enhances host plant resistance to a specialist herbivore. Plant, Cell and Environment, 2020, 43, 2571-2585.	5.7	13
21	Host plants alter their volatiles to help a solitary egg parasitoid distinguish habitats with parasitized hosts from those without. Plant, Cell and Environment, 2020, 43, i.	5.7	0
22	Rice phenolamindes reduce the survival of female adults of the white-backed planthopper Sogatella furcifera. Scientific Reports, 2020, 10, 5778.	3.3	17
23	Silencing <i>OsMAPK20-5</i> has different effects on rice pests in the field. Plant Signaling and Behavior, 2019, 14, e1640562.	2.4	5
24	OsMKK3, a Stress-Responsive Protein Kinase, Positively Regulates Rice Resistance to Nilaparvata lugens via Phytohormone Dynamics. International Journal of Molecular Sciences, 2019, 20, 3023.	4.1	35
25	PRRs and NB-LRRs: From Signal Perception to Activation of Plant Innate Immunity. International Journal of Molecular Sciences, 2019, 20, 1882.	4.1	60
26	Zinc finger protein transcription factors: Integrated line of action for plant antimicrobial activity. Microbial Pathogenesis, 2019, 132, 141-149.	2.9	55
27	The Desaturase Gene Family is Crucially Required for Fatty Acid Metabolism and Survival of the Brown Planthopper, Nilaparvata lugens. International Journal of Molecular Sciences, 2019, 20, 1369.	4.1	12
28	Molecular Dissection of Early Defense Signaling Underlying Volatile-Mediated Defense Regulation and Herbivore Resistance in Rice. Plant Cell, 2019, 31, 687-698.	6.6	82
29	A Group D MAPK Protects Plants from Autotoxicity by Suppressing Herbivore-Induced Defense Signaling. Plant Physiology, 2019, 179, 1386-1401.	4.8	31
30	Rice copine genes <i>Os<scp>BON</scp>1</i> and <i>Os<scp>BON</scp>3</i> function as suppressors of broadâ€spectrum disease resistance. Plant Biotechnology Journal, 2018, 16, 1476-1487.	8.3	27
31	Overexpression of OsGID1 Enhances the Resistance of Rice to the Brown Planthopper Nilaparvata lugens. International Journal of Molecular Sciences, 2018, 19, 2744.	4.1	32
32	Expressing OsMPK4 Impairs Plant Growth but Enhances the Resistance of Rice to the Striped Stem Borer Chilo suppressalis. International Journal of Molecular Sciences, 2018, 19, 1182.	4.1	28
33	The Commonly Used Bactericide Bismerthiazol Promotes Rice Defenses against Herbivores. International Journal of Molecular Sciences, 2018, 19, 1271.	4.1	9
34	Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis. Nature Plants, 2018, 4, 338-344.	9.3	144
35	OsLRRâ€RLK1, an early responsive leucineâ€rich repeat receptorâ€like kinase, initiates rice defense responses against a chewing herbivore. New Phytologist, 2018, 219, 1097-1111.	7.3	75
36	Furan carbonylhydrazones-derived elicitors that induce the resistance of rice to the brown planthopper Nilaparvata lugens. Phytochemistry Letters, 2018, 26, 184-189.	1.2	5

#	Article	IF	CITATIONS
37	A Salivary Endo-β-1,4-Glucanase Acts as an Effector That Enables the Brown Planthopper to Feed on Rice. Plant Physiology, 2017, 173, 1920-1932.	4.8	99
38	A salivary EF-hand calcium-binding protein of the brown planthopper Nilaparvata lugens functions as an effector for defense responses in rice. Scientific Reports, 2017, 7, 40498.	3.3	75
39	Diversity-Oriented Synthesis of Natural-Product-like Libraries Containing a 3-Methylbenzofuran Moiety for the Discovery of New Chemical Elicitors. ChemistryOpen, 2017, 6, 102-111.	1.9	9
40	Lamin-like Proteins Negatively Regulate Plant Immunity through NAC WITH TRANSMEMBRANE MOTIF1-LIKE9 and NONEXPRESSOR OF PR GENES1 in Arabidopsis thaliana. Molecular Plant, 2017, 10, 1334-1348.	8.3	55
41	Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nature Communications, 2017, 8, 1031.	12.8	138
42	Silencing <i>OsSLR1</i> enhances the resistance of rice to the brown planthopper <scp><i>Nilaparvata lugens</i></scp> . Plant, Cell and Environment, 2017, 40, 2147-2159.	5.7	37
43	The Transcription Factor OsWRKY45 Negatively Modulates the Resistance of Rice to the Brown Planthopper Nilaparvata lugens. International Journal of Molecular Sciences, 2016, 17, 697.	4.1	53
44	Jasmonic acid carboxyl methyltransferase regulates development and herbivoryâ€induced defense response in rice. Journal of Integrative Plant Biology, 2016, 58, 564-576.	8.5	72
45	An E3ÂUbiquitin Ligase-BAG Protein Module Controls Plant Innate Immunity and Broad-Spectrum Disease Resistance. Cell Host and Microbe, 2016, 20, 758-769.	11.0	109
46	OsWRKY53, a versatile switch in regulating herbivore-induced defense responses in rice. Plant Signaling and Behavior, 2016, 11, e1169357.	2.4	55
47	A conserved pattern in plantâ€mediated interactions between herbivores. Ecology and Evolution, 2016, 6, 1032-1040.	1.9	10
48	Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore. Scientific Reports, 2016, 6, 32666.	3.3	17
49	Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores. ELife, 2015, 4, e04805.	6.0	118
50	Induced Jasmonate Signaling Leads to Contrasting Effects on Root Damage and Herbivore Performance. Plant Physiology, 2015, 167, 1100-1116.	4.8	104
51	(Z)-3-Hexenal, One of the Green Leaf Volatiles, Increases Susceptibility of Rice to the White-Backed Planthopper Sogatella furcifera. Plant Molecular Biology Reporter, 2015, 33, 377-387.	1.8	11
52	(E)-β-caryophyllene functions as a host location signal for the rice white-backed planthopper Sogatella furcifera. Physiological and Molecular Plant Pathology, 2015, 91, 106-112.	2.5	24
53	The rice transcription factor WRKY53 suppresses herbivore-induced defenses by acting as a negative feedback modulator of map kinase activity. Plant Physiology, 2015, 169, pp.01090.2015.	4.8	75
54	Finding new elicitors that induce resistance in rice to the white-backed planthopper Sogatella furcifera. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5601-5603.	2.2	18

#	Article	IF	CITATIONS
55	Herbivore-Induced Defenses in Rice and Their Potential Application in Rice Planthopper Management. , 2015, , 91-115.		5

$_{56}$ Identification and Characterization of MicroRNAs in Small Brown Planthopper (Laodephax) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{19}^{50}$ 702 Td

57	The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120283.	4.0	60
58	Reprint of: Biological control of rice insect pests in China. Biological Control, 2014, 68, 103-116.	3.0	48
59	Overexpression of a Xylanase Inhibitor Gene, OsHI-XIP, Enhances Resistance in Rice to Herbivores. Plant Molecular Biology Reporter, 2014, 32, 465-475.	1.8	21
60	Contrasting Effects of Ethylene Biosynthesis on Induced Plant Resistance against a Chewing and a Piercing-Sucking Herbivore in Rice. Molecular Plant, 2014, 7, 1670-1682.	8.3	94
61	The 9-lipoxygenase Osr9-LOX1 interacts with the 13-lipoxygenase-mediated pathway to regulate resistance to chewing and piercing-sucking herbivores in rice. Physiologia Plantarum, 2014, 152, 59-69.	5.2	52
62	Transcriptome Analysis of Fat Bodies from Two Brown Planthopper (Nilaparvata lugens) Populations with Different Virulence Levels in Rice. PLoS ONE, 2014, 9, e88528.	2.5	23
63	<i><scp>OsNPR1</scp></i> negatively regulates herbivoreâ€induced <scp>JA</scp> and ethylene signaling and plant resistance to a chewing herbivore in rice. Physiologia Plantarum, 2013, 147, 340-351.	5.2	49
64	OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. Plant Cell Reports, 2013, 32, 1075-1084.	5.6	75
65	Biological control of rice insect pests in China. Biological Control, 2013, 67, 8-20.	3.0	122
65 66	Biological control of rice insect pests in China. Biological Control, 2013, 67, 8-20. Feeding-Induced Interactions Between <i>Nilaparvata lugens</i> and <i>Laodelphax striatellus</i> (Hemiptera: Delphacidae): Effects on Feeding Behavior and Honeydew Excretion. Environmental Entomology, 2013, 42, 987-997.	3.0 1.4	122 12
	Feeding-Induced Interactions Between <i>Nilaparvata lugens</i> and <i>Laodelphax striatellus</i> (Hemiptera: Delphacidae): Effects on Feeding Behavior and Honeydew Excretion.		
66	Feeding-Induced Interactions Between <i>Nilaparvata lugens</i> and <i>Laodelphax striatellus</i> (Hemiptera: Delphacidae): Effects on Feeding Behavior and Honeydew Excretion. Environmental Entomology, 2013, 42, 987-997. Feeding-Induced Interactions Between Two Rice Planthoppers, <i>Nilaparvata lugens</i> and <i>Sogatella furcifera</i> (Hemiptera: Delphacidae): Effects on Feeding and Honeydew	1.4	12
66 67	 Feeding-Induced Interactions Between <i>Nilaparvata lugens</i>and<i>Laodelphax striatellus</i>(Hemiptera: Delphacidae): Effects on Feeding Behavior and Honeydew Excretion. Environmental Entomology, 2013, 42, 987-997. Feeding-Induced Interactions Between Two Rice Planthoppers, <I>Nilaparvata lugens</I> and <i>Sogatella furcifera</i> (Hemiptera: Delphacidae): Effects on Feeding and Honeydew Excretion. Environmental Entomology, 2013, 42, 1281-1291. Comparative Transcriptome Analysis of Salivary Glands of Two Populations of Rice Brown 	1.4	12 15
66 67 68	 Feeding-Induced Interactions Between <i>Nilaparvata lugens</i>and <i>Laodelphax striatellus</i>(Hemiptera: Delphacidae): Effects on Feeding Behavior and Honeydew Excretion. Environmental Entomology, 2013, 42, 987-997. Feeding-Induced Interactions Between Two Rice Planthoppers, <l>Nilaparvata lugens</l> and <l>Sogatella furcifera</l> (Hemiptera: Delphacidae): Effects on Feeding and Honeydew Excretion. Environmental Entomology, 2013, 42, 1281-1291. Comparative Transcriptome Analysis of Salivary Glands of Two Populations of Rice Brown Planthopper, Nilaparvata lugens, That Differ in Virulence. PLoS ONE, 2013, 8, e79612. The broadâ€leaf herbicide 2,4â€dichlorophenoxyacetic acid turns rice into a living trap for a major insect 	1.4 1.4 2.5	12 15 100
66 67 68 69	Feeding-Induced Interactions Between <i>Nilaparvata lugens</i> striatellus(i>and <i>Laodelphax striatellus</i> (i>(Hemiptera: Delphacidae): Effects on Feeding Behavior and Honeydew Excretion. Environmental Entomology, 2013, 42, 987-997. Feeding-Induced Interactions Between Two Rice Planthoppers, <l>Nilaparvata lugens</l> and <l>Sogatella furcifera</l> (Hemiptera: Delphacidae): Effects on Feeding and Honeydew Excretion. Excretion. Environmental Entomology, 2013, 42, 1281-1291. Comparative Transcriptome Analysis of Salivary Glands of Two Populations of Rice Brown Planthopper, Nilaparvata lugens, That Differ in Virulence. PLoS ONE, 2013, 8, e79612. The broadâ€leaf herbicide 2,4â€dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp. New Phytologist, 2012, 194, 498-510. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin	1.4 1.4 2.5 7.3	12 15 100 54

#	Article	IF	CITATIONS
73	Genomeâ€wide transcriptional changes and defenceâ€related chemical profiling of rice in response to infestation by the rice striped stem borer <i>Chilo suppressalis</i> . Physiologia Plantarum, 2011, 143, 21-40.	5.2	57
74	The Chloroplast-Localized Phospholipases D α4 and α5 Regulate Herbivore-Induced Direct and Indirect Defenses in Rice Â. Plant Physiology, 2011, 157, 1987-1999.	4.8	77
75	Salicylic acid and ethylene signaling pathways are involved in production of rice trypsin proteinase inhibitors induced by the leaf folder Cnaphalocrocis medinalis (Guenée). Science Bulletin, 2011, 56, 2351-2358.	1.7	20
76	Transcriptome Analysis of the Brown Planthopper Nilaparvata lugens. PLoS ONE, 2010, 5, e14233.	2.5	229
77	Silencing <i>OsHl‣OX</i> makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant Journal, 2009, 60, 638-648.	5.7	244
78	β-Glucosidase treatment and infestation by the rice brown planthopper Nilaparvata lugens elicit similar signaling pathways in rice plants. Science Bulletin, 2008, 53, 53-57.	1.7	34
79	Differential attraction of parasitoids in relation to specificity of kairomones from herbivores and their byâ€products. Insect Science, 2008, 15, 381-397.	3.0	56
80	Altered Disease Development in the eui Mutants and Eui Overexpressors Indicates that Gibberellins Negatively Regulate Rice Basal Disease Resistance. Molecular Plant, 2008, 1, 528-537.	8.3	123
81	Preference and Performance of <1>Anagrus nilaparvatae (Hymenoptera: Mymaridae): Effect of Infestation Duration and Density by <1>Nilaparvata lugens (Homoptera: Delphacidae). Environmental Entomology, 2008, 37, 748-754.	1.4	7
82	Phytochrome Chromophore Deficiency Leads to Overproduction of Jasmonic Acid and Elevated Expression of Jasmonate-Responsive Genes in Arabidopsis. Plant and Cell Physiology, 2007, 48, 1061-1071.	3.1	61
83	Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnology Journal, 2007, 5, 313-324.	8.3	350
84	RNAi knockdown of Oryza sativa root meander curling gene led to altered root development and coiling which were mediated by jasmonic acid signalling in rice. Plant, Cell and Environment, 2007, 30, 690-699.	5.7	56
85	Plant Terpenoids: Biosynthesis and Ecological Functions. Journal of Integrative Plant Biology, 2007, 49, 179-186.	8.5	352
86	Effects of venom/calyx fluid from the endoparasitic wasp Cotesia plutellae on the hemocytes of its host Plutella xylostella in vitro. Journal of Insect Physiology, 2007, 53, 22-29.	2.0	42
87	Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Molecular Biology, 2007, 65, 799-815.	3.9	268
88	The rice (E)-β-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry, 2007, 68, 1632-1641.	2.9	189
89	Differences in Induced Volatile Emissions among Rice Varieties Result in Differential Attraction and Parasitism of Nilaparvata lugens Eggs by the Parasitoid Anagrus nilaparvatae in the Field. Journal of Chemical Ecology, 2006, 32, 2375-2387.	1.8	90
90	Role of ethylene signaling in the production of rice volatiles induced by the rice brown planthopper Nilaparvata lugens. Science Bulletin, 2006, 51, 2457-2465.	1.7	47

#	Article	IF	CITATIONS
91	Silencing of a Germin-Like Gene in Nicotiana attenuata Improves Performance of Native Herbivores Â. Plant Physiology, 2006, 140, 1126-1136.	4.8	121
92	The Wound Response Mutant suppressor of prosystemin-mediated responses6 (spr6) is a Weak Allele of the Tomato Homolog of CORONATINE-INSENSITIVE1 (COI1). Plant and Cell Physiology, 2006, 47, 653-663.	3.1	26
93	Non-host plant extracts reduce oviposition of Plutella xylostella (Lepidoptera: Plutellidae) and enhance parasitism by its parasitoid Cotesia plutellae (Hymenoptera: Braconidae). Bulletin of Entomological Research, 2006, 96, 373-8.	1.0	7
94	Exogenous Application of Jasmonic Acid Induces Volatile Emissions in Rice and Enhances Parasitism of Nilaparvata lugens Eggs by theParasitoid Anagrus nilaparvatae. Journal of Chemical Ecology, 2005, 31, 1985-2002.	1.8	147
95	Attraction of the Parasitoid Anagrus nilaparvatae to Rice Volatiles Induced by the Rice Brown Planthopper Nilaparvata lugens. Journal of Chemical Ecology, 2005, 31, 2357-2372.	1.8	123
96	Nitrogen Supply Influences Herbivore-Induced Direct and Indirect Defenses and Transcriptional Responses in Nicotiana attenuata. Plant Physiology, 2004, 135, 496-506.	4.8	128
97	Title is missing!. BioControl, 2003, 48, 73-86.	2.0	44
98	Manduca sexta recognition and resistance among allopolyploid Nicotiana host plants. Proceedings of the United States of America, 2003, 100, 14581-14586.	7.1	88
99	Host-recognition kairomone from Sogatella furcifera for the parasitoid Anagrus nilaparvatae. Entomologia Experimentalis Et Applicata, 2001, 101, 59-67.	1.4	19
100	Intra- and Inter-specific Effects of the Brown Planthopper and White Backed Planthopper on Their Population Performance. Journal of Asia-Pacific Entomology, 2001, 4, 85-92.	0.9	16