List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3957678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Volatile transport modeling on Triton with new observational constraints. Icarus, 2022, 373, 114764.	2.5	7
2	No detection of SO ₂ , H ₂ S, or OCS in the atmosphere of Mars from the first two Martian years of observations from TGO/ACS. Astronomy and Astrophysics, 2022, 658, A86.	5.1	1
3	Thermal Structure and Aerosols in Mars' Atmosphere From TIRVIM/ACS Onboard the ExoMars Trace Gas Orbiter: Validation of the Retrieval Algorithm. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	9
4	Cryogenic origin of fractionation between perchlorate and chloride under modern martian climate. Communications Earth & Environment, 2022, 3, .	6.8	1
5	Constraints on the structure and seasonal variations of Triton's atmosphere from the 5 October 2017 stellar occultation and previous observations. Astronomy and Astrophysics, 2022, 659, A136.	5.1	8
6	The Emirates Mars Mission. Space Science Reviews, 2022, 218, 4.	8.1	29
7	Thermal Tides in the Martian Atmosphere Near Northern Summer Solstice Observed by ACS/TIRVIM Onboard TGO. Geophysical Research Letters, 2022, 49, .	4.0	10
8	Stratigraphic and Isotopic Evolution of the Martian Polar Caps From Paleo limate Models. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	4
9	InSight Pressure Data Recalibration, and Its Application to the Study of Longâ€Term Pressure Changes on Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	12
10	Improved Modeling of Mars' HDO Cycle Using a Mars' Global Climate Model. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	5
11	Global climate model occultation lightcurves tested by August 2018 ground-based stellar occultation. Icarus, 2021, 356, 113976.	2.5	0
12	The Wave Origins of Longitudinal Structures in ExoMars Trace Gas Orbiter (TGO) Aerobraking Densities. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028769.	2.4	5
13	Multi-model Meteorological and Aeolian Predictions for Mars 2020 and the Jezero Crater Region. Space Science Reviews, 2021, 217, 20.	8.1	35
14	Seasonal reappearance of HCl in the atmosphere of Mars during the Mars year 35 dusty season. Astronomy and Astrophysics, 2021, 647, A161.	5.1	17
15	The Effect of the Martian 2018 Global Dust Storm on HDO as Predicted by a Mars Global Climate Model. Geophysical Research Letters, 2021, 48, e2020GL090962.	4.0	12
16	Relationship Between the Ozone and Water Vapor Columns on Mars as Observed by SPICAM and Calculated by a Global Climate Model. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006838.	3.6	19
17	TRAPPIST Habitable Atmosphere Intercomparison (THAI) Workshop Report. Planetary Science Journal, 2021, 2, 106.	3.6	29
18	Near Surface Properties of Martian Regolith Derived From InSight HP ³ â€RAD Temperature Observations During Phobos Transits. Geophysical Research Letters, 2021, 48, e2021GL093542.	4.0	13

#	Article	IF	CITATIONS
19	Soil Thermophysical Properties Near the InSight Lander Derived From 50 Sols of Radiometer Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006859.	3.6	22
20	The vertical structure of CO in the Martian atmosphere from the ExoMars Trace Gas Orbiter. Nature Geoscience, 2021, 14, 67-71.	12.9	30
21	A Study of Daytime Convective Vortices and Turbulence in the Martian Planetary Boundary Layer Based on Halfâ€aâ€Year of InSight Atmospheric Measurements and Largeâ€Eddy Simulations. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	45
22	Emirates Mars Mission Characterization of Mars Atmosphere Dynamics and Processes. Space Science Reviews, 2021, 217, .	8.1	23
23	Seasonal Variability of the Daytime and Nighttime Atmospheric Turbulence Experienced by InSight on Mars. Geophysical Research Letters, 2021, 48, e2021GL095453.	4.0	31
24	MOSAIC: A Satellite Constellation to Enable Groundbreaking Mars Climate System Science and Prepare for Human Exploration. Planetary Science Journal, 2021, 2, 211.	3.6	6
25	Seasonal seismic activity on Mars. Earth and Planetary Science Letters, 2021, 576, 117171.	4.4	13
26	The environmental effects of very large bolide impacts on early Mars explored with a hierarchy of numerical models. Icarus, 2020, 335, 113419.	2.5	30
27	Diurnal Variations of Dust During the 2018 Clobal Dust Storm Observed by the Mars Climate Sounder. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006115.	3.6	52
28	Mars's Twilight Cloud Band: A New Cloud Feature Seen During the Mars Year 34 Global Dust Storm. Geophysical Research Letters, 2020, 47, e2019GL084997.	4.0	16
29	Equatorial mountains on Pluto are covered by methane frosts resulting from a unique atmospheric process. Nature Communications, 2020, 11, 5056.	12.8	12
30	Imaging of Martian Circulation Patterns and Atmospheric Tides Through MAVEN/IUVS Nightglow Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027318.	2.4	13
31	The Origin of Observed Magnetic Variability for a Sol on Mars From InSight. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006505.	3.6	15
32	Solar Tides in the Middle and Upper Atmosphere of Mars. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028140.	2.4	27
33	Effects of a Large Dust Storm in the Nearâ€Surface Atmosphere as Measured by InSight in Elysium Planitia, Mars. Comparison With Contemporaneous Measurements by Mars Science Laboratory. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006493.	3.6	30
34	TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI): motivations and protocol version 1.0. Geoscientific Model Development, 2020, 13, 707-716.	3.6	52
35	Is the Faint Young Sun Problem for Earth Solved?. Space Science Reviews, 2020, 216, 1.	8.1	30
36	Impact of Gravity Waves on the Middle Atmosphere of Mars: A Nonâ€Orographic Gravity Wave Parameterization Based on Global Climate Modeling and MCS Observations. Journal of Geophysical Research E: Planets, 2020, 125, e2018JE005873.	3.6	23

#	Article	IF	CITATIONS
37	Geology of the InSight landing site on Mars. Nature Communications, 2020, 11, 1014.	12.8	107
38	The atmosphere of Mars as observed by InSight. Nature Geoscience, 2020, 13, 190-198.	12.9	161
39	Crustal and time-varying magnetic fields at the InSight landing site on Mars. Nature Geoscience, 2020, 13, 199-204.	12.9	68
40	Martian Year 34 Column Dust Climatology from Mars Climate Sounder Observations: Reconstructed Maps and Model Simulations. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006111.	3.6	137
41	Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season. Science, 2020, 367, 297-300.	12.6	117
42	Pluto's Beating Heart Regulates the Atmospheric Circulation: Results From Highâ€Resolution and Multiyear Numerical Climate Simulations. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006120.	3.6	16
43	Modeling Windâ€Driven Ionospheric Dynamo Currents at Mars: Expectations for InSight Magnetic Field Measurements. Geophysical Research Letters, 2019, 46, 5083-5091.	4.0	20
44	Mapping water ice clouds on Mars with MRO/MARCI. Icarus, 2019, 332, 24-49.	2.5	45
45	Global seasonal variations of the near-surface relative humidity levels on present-day Mars. Icarus, 2019, 333, 481-495.	2.5	11
46	The CH4 cycles on Pluto over seasonal and astronomical timescales. Icarus, 2019, 329, 148-165.	2.5	38
47	The paradoxes of the Late Hesperian Mars ocean. Scientific Reports, 2019, 9, 5717.	3.3	18
48	No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 568, 517-520.	27.8	111
49	Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 2019, 568, 521-525.	27.8	107
50	Simulations of Water Vapor and Clouds on Rapidly Rotating and Tidally Locked Planets: A 3D Model Intercomparison. Astrophysical Journal, 2019, 875, 46.	4.5	44
51	Far infrared measurements of absorptions by CH4 + CO2 and H2 + CO2 mixtures and implications for greenhouse warming on early Mars. Icarus, 2019, 321, 189-199.	2.5	31
52	Lower atmosphere and pressure evolution on Pluto from ground-based stellar occultations, 1988–2016. Astronomy and Astrophysics, 2019, 625, A42.	5.1	29
53	TheÂnitrogenÂcyclesÂonÂPlutoÂoverÂseasonalÂand astronomicalÂtimescales. Icarus, 2018, 309, 277-296.	2.5	54
54	The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	8.1	119

#	Article	IF	CITATIONS
55	Recent advances in collisional effects on spectra of molecular gases and their practical consequences. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 213, 178-227.	2.3	85
56	Regional stratigraphy of the south polar layered deposits (Promethei Lingula, Mars): "Discontinuity-bounded―units in images and radargrams. Icarus, 2018, 308, 76-107.	2.5	11
57	Bladed Terrain on Pluto: Possible origins and evolution. Icarus, 2018, 300, 129-144.	2.5	47
58	A Seasonally Recurrent Annular Cyclone in Mars Northern Latitudes and Observations of a Companion Vortex. Journal of Geophysical Research E: Planets, 2018, 123, 3020-3034.	3.6	11
59	Atmospheric Science with InSight. Space Science Reviews, 2018, 214, 1.	8.1	88
60	Dunes on Pluto. Science, 2018, 360, 992-997.	12.6	81
61	Modeling climate diversity, tidal dynamics and the fate of volatiles on TRAPPIST-1 planets. Astronomy and Astrophysics, 2018, 612, A86.	5.1	130
62	Pluto's haze as a surface material. Icarus, 2018, 314, 232-245.	2.5	50
63	MAVEN/IUVS Stellar Occultation Measurements of Mars Atmospheric Structure and Composition. Journal of Geophysical Research E: Planets, 2018, 123, 1449-1483.	3.6	56
64	Parameterization of Rocket Dust Storms on Mars in the LMD Martian GCM: Modeling Details and Validation. Journal of Geophysical Research E: Planets, 2018, 123, 982-1000.	3.6	28
65	A post-new horizons global climate model of Pluto including the N 2 , CH 4 and CO cycles. Icarus, 2017, 287, 54-71.	2.5	61
66	3D modeling of organic haze in Pluto's atmosphere. Icarus, 2017, 287, 72-86.	2.5	46
67	Unraveling the martian water cycle with high-resolution global climate simulations. Icarus, 2017, 291, 82-106.	2.5	34
68	3D modelling of the climatic impact of outflow channel formation events on early Mars. Icarus, 2017, 288, 10-36.	2.5	37
69	Nitric oxide nightglow and Martian mesospheric circulation from MAVEN/IUVS observations and LMDâ€MGCM predictions. Journal of Geophysical Research: Space Physics, 2017, 122, 5782-5797.	2.4	36
70	Snow precipitation on Mars driven by cloud-induced night-time convection. Nature Geoscience, 2017, 10, 652-657.	12.9	32
71	CO2 condensation is a serious limit to the deglaciation of Earth-like planets. Earth and Planetary Science Letters, 2017, 476, 11-21.	4.4	53
72	A warm or a cold early Earth? New insights from a 3-D climate-carbon model. Earth and Planetary Science Letters, 2017, 474, 97-109.	4.4	45

#	Article	IF	CITATIONS
73	Mars Clouds. , 2017, , 76-105.		24
74	The Global Circulation. , 2017, , 229-294.		31
75	The Mars Dust Cycle. , 2017, , 295-337.		70
76	The Water Cycle. , 2017, , 338-373.		24
77	Upper Neutral Atmosphere and Ionosphere. , 2017, , 433-463.		33
78	Recent Climate Variations. , 2017, , 497-525.		8
79	The Early Mars Climate System. , 2017, , 526-568.		9
80	The Challenge of Atmospheric Data Assimilation on Mars. Earth and Space Science, 2017, 4, 690-722.	2.6	27
81	The habitability of Proxima Centauri b. Astronomy and Astrophysics, 2016, 596, A112.	5.1	191
82	Late Tharsis formation and implications for early Mars. Nature, 2016, 531, 344-347.	27.8	80
83	DIFFERENCES IN WATER VAPOR RADIATIVE TRANSFER AMONG 1D MODELS CAN SIGNIFICANTLY AFFECT THE INNER EDGE OF THE HABITABLE ZONE. Astrophysical Journal, 2016, 826, 222.	4.5	68
84	Observed glacier and volatile distribution on Pluto from atmosphere–topography processes. Nature, 2016, 540, 86-89.	27.8	78
85	The solsticial pause on Mars: 2 modelling and investigation of causes. Icarus, 2016, 264, 465-477.	2.5	48
86	Comparison of "warm and wet―and "cold and icy―scenarios for early Mars in a 3â€D climate model. Journal of Geophysical Research E: Planets, 2015, 120, 1201-1219.	3.6	153
87	Variability of the Martian thermosphere during eight Martian years as simulated by a ground-to-exosphere global circulation model. Journal of Geophysical Research E: Planets, 2015, 120, 2020-2035.	3.6	67
88	Eight-year climatology of dust optical depth on Mars. Icarus, 2015, 251, 65-95.	2.5	316
89	Sulfur in the early martian atmosphere revisited: Experiments with a 3-D Global Climate Model. Icarus, 2015, 261, 133-148.	2.5	41
90	Exploring the spatial, temporal, and vertical distribution of methane in Pluto's atmosphere. Icarus, 2015, 246, 268-278.	2.5	28

#	Article	IF	CITATIONS
91	Variability of the hydrogen in the martian upper atmosphere as simulated by a 3D atmosphere–exosphere coupling. Icarus, 2015, 245, 282-294.	2.5	77
92	CO2 Ice Clouds (Mars). , 2015, , 489-490.		0
93	Three-dimensional Martian ionosphere model: II. Effect of transport processes due to pressure gradients. Journal of Geophysical Research E: Planets, 2014, 119, 1614-1636.	3.6	51
94	Comprehensive analysis of glaciated martian crater Greg. Icarus, 2014, 228, 96-120.	2.5	35
95	Possible climates on terrestrial exoplanets. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130084.	3.4	53
96	Titan's past and future: 3D modeling of a pure nitrogen atmosphere and geological implications. Icarus, 2014, 241, 269-279.	2.5	24
97	Recent Ice Ages on Mars: The role of radiatively active clouds and cloud microphysics. Geophysical Research Letters, 2014, 41, 4873-4879.	4.0	75
98	Global climate modeling of Saturn's atmosphere. Part I: Evaluation of the radiative transfer model. Icarus, 2014, 238, 110-124.	2.5	45
99	The seasonal cycle of water vapour on Mars from assimilation of Thermal Emission Spectrometer data. Icarus, 2014, 237, 97-115.	2.5	47
100	Detection of detached dust layers in the Martian atmosphere from their thermal signature using assimilation. Geophysical Research Letters, 2014, 41, 6620-6626.	4.0	26
101	Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. Journal of Geophysical Research E: Planets, 2014, 119, 1479-1495.	3.6	162
102	Constraining physics of very hot super-Earths with the <i>James Webb</i> Telescope. The case of CoRot-7b. Astronomy and Astrophysics, 2014, 563, A103.	5.1	16
103	CO2 Ice Clouds (Mars). , 2014, , 1-1.		0
104	Orographic precipitation in valley network headwaters: Constraints on the ancient Martian atmosphere. Geophysical Research Letters, 2013, 40, 4182-4187.	4.0	20
105	The effect of atmospheric pressure on the dispersal of pyroclasts from martian volcanoes. Icarus, 2013, 223, 149-156.	2.5	21
106	3D modelling of the early martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds. Icarus, 2013, 222, 81-99.	2.5	259
107	Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature, 2013, 504, 268-271.	27.8	243
108	Global modelling of the early martian climate under a denser CO2 atmosphere: Water cycle and ice evolution. Icarus, 2013, 222, 1-19.	2.5	275

#	Article	IF	CITATIONS
109	On the probability of habitable planets. International Journal of Astrobiology, 2013, 12, 177-185.	1.6	35
110	3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability, and habitability. Astronomy and Astrophysics, 2013, 554, A69.	5.1	203
111	Rocket dust storms and detached dust layers in the Martian atmosphere. Journal of Geophysical Research E: Planets, 2013, 118, 746-767.	3.6	98
112	Threeâ€dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km. Journal of Geophysical Research E: Planets, 2013, 118, 2105-2123.	3.6	118
113	A thermal plume model for the Martian convective boundary layer. Journal of Geophysical Research E: Planets, 2013, 118, 1468-1487.	3.6	61
114	Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3â€Ð GCM. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,414.	3.3	106
115	The influence of radiatively active water ice clouds on the Martian climate. Geophysical Research Letters, 2012, 39, .	4.0	115
116	History and anatomy of subsurface ice on Mars. Icarus, 2012, 220, 1112-1120.	2.5	68
117	Aphelion waterâ€ice cloud mapping and property retrieval using the OMEGA imaging spectrometer onboard Mars Express. Journal of Geophysical Research, 2012, 117, .	3.3	42
118	Extensive MRO CRISM observations of 1.27 <i>μ</i> m O ₂ airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations. Journal of Geophysical Research, 2012, 117, .	3.3	51
119	Early Mars climate near the Noachian–Hesperian boundary: Independent evidence for cold conditions from basal melting of the south polar ice sheet (Dorsa Argentea Formation) and implications for valley network formation. Icarus, 2012, 219, 25-40.	2.5	84
120	The dispersal of pyroclasts from ancient explosive volcanoes on Mars: Implications for the friable layered deposits. Icarus, 2012, 219, 358-381.	2.5	82
121	Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. Journal of Geophysical Research, 2011, 116, .	3.3	145
122	A stringent upper limit to SO ₂ in the Martian atmosphere. Astronomy and Astrophysics, 2011, 530, A37.	5.1	49
123	GLIESE 581D IS THE FIRST DISCOVERED TERRESTRIAL-MASS EXOPLANET IN THE HABITABLE ZONE. Astrophysical Journal Letters, 2011, 733, L48.	8.3	205
124	Evidence for Amazonian northern mid-latitude regional glacial landsystems on Mars: Glacial flow models using GCM-driven climate results and comparisons to geological observations. Icarus, 2011, 216, 23-39.	2.5	36
125	The martian mesosphere as revealed by CO2 cloud observations and General Circulation Modeling. Icarus, 2011, 216, 10-22.	2.5	41
126	The impact of martian mesoscale winds on surface temperature and on the determination of thermal inertia. Icarus, 2011, 212, 504-519.	2.5	44

#	Article	IF	CITATIONS
127	Evidence of Water Vapor in Excess of Saturation in the Atmosphere of Mars. Science, 2011, 333, 1868-1871.	12.6	122
128	Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling. Astronomy and Astrophysics, 2010, 522, A22.	5.1	95
129	Thermal and wind structure of the Martian thermosphere as given by two General Circulation Models. Planetary and Space Science, 2010, 58, 1832-1849.	1.7	24
130	Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models. Icarus, 2010, 209, 452-469.	2.5	71
131	Infrared collision-induced and far-line absorption in dense CO2 atmospheres. Icarus, 2010, 210, 992-997.	2.5	128
132	Structure and dynamics of the convective boundary layer on Mars as inferred from largeâ€eddy simulations and remoteâ€sensing measurements. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 414-428.	2.7	49
133	Superrotation of Venus' atmosphere analyzed with a full general circulation model. Journal of Geophysical Research, 2010, 115, .	3.3	180
134	Water ice at low to midlatitudes on Mars. Journal of Geophysical Research, 2010, 115, .	3.3	78
135	A study of the properties of a local dust storm with Mars Express OMEGA and PFS data. Icarus, 2009, 201, 504-516.	2.5	42
136	Amazonian northern mid-latitude glaciation on Mars: A proposed climate scenario. Icarus, 2009, 203, 390-405.	2.5	240
137	Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM. Journal of Geophysical Research, 2009, 114, .	3.3	200
138	A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation and first results. Journal of Geophysical Research, 2009, 114, .	3.3	116
139	Testing evidence of recent hydration state change in sulfates on Mars. Journal of Geophysical Research, 2009, 114, .	3.3	78
140	A groundâ€ŧoâ€exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. Journal of Geophysical Research, 2009, 114, .	3.3	107
141	The effect of ground ice on the Martian seasonal CO2 cycle. Planetary and Space Science, 2008, 56, 251-255.	1.7	65
142	Tropical mountain glaciers on Mars: Altitude-dependence of ice accumulation, accumulation conditions, formation times, glacier dynamics, and implications for planetary spin-axis/orbital history. Icarus, 2008, 198, 305-317.	2.5	145
143	Heterogeneous chemistry in the atmosphere of Mars. Nature, 2008, 454, 971-975.	27.8	130
144	Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 2. Meteorological maps. Journal of Geophysical Research, 2007, 112, .	3.3	31

#	Article	IF	CITATIONS
145	Recent formation and evolution of northern Martian polar layered deposits as inferred from a Global Climate Model. Journal of Geophysical Research, 2007, 112, .	3.3	112
146	Water and Climates on Mars. , 2007, , 103-122.		2
147	On the origin of perennial water ice at the south pole of Mars: A precessionâ€controlled mechanism?. Journal of Geophysical Research, 2007, 112, .	3.3	40
148	Hyperspectral imaging of convective CO ₂ ice clouds in the equatorial mesosphere of Mars. Journal of Geophysical Research, 2007, 112, .	3.3	81
149	Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method. Journal of Geophysical Research, 2007, 112, .	3.3	38
150	SPICAM on Mars Express: Observing modes and overview of UV spectrometer data and scientific results. Journal of Geophysical Research, 2006, 111, .	3.3	148
151	Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity. Science, 2006, 311, 368-371.	12.6	405
152	Seasonal variations of the martian COÂover Hellas as observed byÂOMEGA/Mars Express. Astronomy and Astrophysics, 2006, 459, 265-270.	5.1	62
153	Phyllosilicates on Mars and implications for early martian climate. Nature, 2005, 438, 623-627.	27.8	825
154	Nightglow in the Upper Atmosphere of Mars and Implications for Atmospheric Transport. Science, 2005, 307, 566-569.	12.6	119
155	Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity. Nature, 2004, 431, 1072-1075.	27.8	192
156	Hydrogen peroxide on Mars: evidence for spatial and seasonal variations. Icarus, 2004, 170, 424-429.	2.5	177
157	Upper atmosphere of Mars up to 120 km: Mars Global Surveyor accelerometer data analysis with the LMD general circulation model. Journal of Geophysical Research, 2004, 109, .	3.3	62
158	Three-dimensional modeling of ozone on Mars. Journal of Geophysical Research, 2004, 109, .	3.3	170
159	Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model. Journal of Geophysical Research, 2004, 109, .	3.3	274
160	Numerical simulation of the winter polar wave clouds observed by Mars Global Surveyor Mars Orbiter Laser Altimeter. Icarus, 2003, 164, 33-49.	2.5	30
161	Formation of Recent Martian Debris Flows by Melting of Near-Surface Ground Ice at High Obliquity. Science, 2002, 295, 110-113.	12.6	368
162	Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations. Journal of Geophysical Research, 2002, 107, 7-1-7-15.	3.3	121

#	Article	IF	CITATIONS
163	A climate database for Mars. Journal of Geophysical Research, 1999, 104, 24177-24194.	3.3	299
164	Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 1999, 104, 24155-24175.	3.3	955
165	Habitable Zone around other Stars. Earth, Moon and Planets, 1998, 81, 59-72.	0.6	9
166	CO2Snowfall on Mars: Simulation with a General Circulation Model. Icarus, 1998, 131, 302-316.	2.5	141
167	Warming Early Mars with Carbon Dioxide Clouds That Scatter Infrared Radiation. Science, 1997, 278, 1273-1276.	12.6	416
168	Thermal infrared observations of the condensing Martian polar caps: CO2ice temperatures and radiative budget. Journal of Geophysical Research, 1996, 101, 16865-16879.	3.3	46
169	The sensitivity of the Martian surface pressure and atmospheric mass budget to various parameters: A comparison between numerical simulations and Viking observations. Journal of Geophysical Research, 1995, 100, 5501.	3.3	125
170	Meteorological Variability and the Annual Surface Pressure Cycle on Mars. Journals of the Atmospheric Sciences, 1993, 50, 3625-3640.	1.7	126
171	A stringent upper limit of 20 pptv for methane on Mars and constraints on its dispersion outside Gale crater. Astronomy and Astrophysics, 0, , .	5.1	16